MTH 370, Fall 2009

Solutions to Homework 12

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic and function evaluations) and show your work.

1. Show that the two-species competition model

$$
\begin{aligned}
& \frac{d x}{d t}=r_{1} x\left(1-\frac{x+\beta_{12} y}{\kappa_{1}}\right) \\
& \frac{d y}{d t}=r_{2} y\left(1-\frac{y+\beta_{21} x}{\kappa_{2}}\right)
\end{aligned}
$$

has no limit-cycle solutions in the positive quadrant (i.e., when $x>0, y>0$). [Hint: Set $h(x, y)=\frac{1}{x y}$ and use Dulac's negative criterion.]
Solution: Notice that

$$
h f=r_{1}\left(\frac{1}{y}-\frac{x+\beta_{12} y}{\kappa_{1} y}\right), \quad h g=r_{2}\left(\frac{1}{x}-\frac{y+\beta_{21} x}{\kappa_{2} x}\right),
$$

hence

$$
\frac{\partial(h f)}{\partial x}=-\frac{r_{1}}{\kappa_{1} y}, \quad \frac{\partial(h g)}{\partial y}=-\frac{r_{2}}{\kappa_{2} x}
$$

and so

$$
\frac{\partial(h f)}{\partial x}+\frac{\partial(h g)}{\partial y}=-\left(\frac{r_{1}}{\kappa_{1} y}+\frac{r_{2}}{\kappa_{2} x}\right)<0 \quad \text { for all } x, y>0
$$

Thus by Dulac's negative criterion there cannot be any limit cycle solutions in the positive quadrant.
2. Consider the following nondimensional model from the last homework:

$$
\begin{aligned}
& \frac{d u}{d \tau}=c-u+u^{2} v \\
& \frac{d v}{d \tau}=d-u^{2} v
\end{aligned}
$$

Assuming that $0<c \ll d$, argue that this system undergoes a Hopf bifurcation when $d \approx 1$.
Solution: Recall that the positive equilibrium is

$$
u^{*}=c+d, \quad v^{*}=\frac{d}{(c+d)^{2}}
$$

that the Jacobian at this equilibrium is

$$
J\left(u^{*}, v^{*}\right)=\left[\begin{array}{cc}
\frac{2 d}{c+d}-1 & (c+d)^{2} \\
-\frac{2 d}{c+d} & -(c+d)^{2}
\end{array}\right]
$$

and that the trace and determinant of this Jacobian are

$$
\operatorname{tr}(J)=\frac{2 d}{c+d}-1-(c+d)^{2}=\frac{-c+d}{c+d}-(c+d)^{2}, \quad \operatorname{det}(J)=(c+d)^{2}
$$

If $c \ll d$ then

$$
\operatorname{tr}(J) \approx 1-d^{2}, \quad \operatorname{det}(J) \approx d^{2}
$$

and the eigenvalues of the Jacobian are approximately

$$
\lambda_{ \pm} \approx \frac{1-d^{2} \pm \sqrt{\left(1-d^{2}\right)^{2}-4 d^{2}}}{2}
$$

Therefore, there is the possibility of a Hopf bifurcation at $d^{2} \approx 1$ (i.e., $d \approx 1$) since in this case the discriminant $\lambda_{ \pm}$is negative and the real parts of $\lambda_{ \pm}$are approximately zero. We expect to see limit cycles when $d \lesssim 1$ since this is when the real parts of $\lambda_{ \pm}$are positive.

