MTH 370 Mathematical Biology Section 1, Fall 2009

When:	MWF 12:40-1:30pm
Where:	MW in C207 Wells Hall, F in B100C Wells Hall
Instructor:	Berton Earnshaw
Office:	A308 Wells Hall
Office hours:	M 9:30am-12:30pm or by appointment
Email:	earnshaw@math.msu.edu
Telephone:	353-0693
Web:	www.math.msu.edu/ \sim earnshaw
Class webpage:	www.math.msu.edu/ \sim earnshaw/teaching/mth370-01-09fall/
Texts:	Mathematical Models in Biology, SIAM (2005) by L. Edelstein-Keshet
	A Course in Mathematical Biology, SIAM (2006) by G. de Vries, et al.
	Mathematical Models in Biology, Cambridge (2004) by E. Allman and J. Rhodes

Description: From the course catalog... "First-order linear ordinary differential equations and systems. Qualitative theory of nonlinear continuous dynamical systems. Reaction-diffusion equations. Numerical analysis and computer simulation of solutions to nonlinear systems of differential equations. Numerical linear algebra. Applications to biological sciences."

We are also going to learn some linear algebra and MATLAB. We are going to learn how to think about the dynamics of biological systems by 1) mathematically modeling them, 2) quantitatively and qualitatively analyzing the solutions of the models, and 3) numerical simulating the solutions of the models.

Prerequisites: (MTH 132 or LB 118) and (MTH 133 or LB 119) and (BS 110 or BS 111 or BS 148H or BS 149H or LB 144 or LB 145 or LB 148H or LB 149H)

Homework: Yes, lots of it. You can only learn math by doing it. Homework problems will be assigned most Mondays, and will be due at the **beginning of class** the following Monday (see Tentative Schedule). Each assignment will be drawn from the material covered during the week in which it is assigned, and each will be posted on our class webpage. You may work with other classmates on the problems; however, each student must turn in his or her own assignment. Late homework will **only be accepted** if I have given my prior approval.

Exams: There will be one midterm exam and final exam. The midterm is scheduled for October 14 during our regular class time and will be administered in our classroom (C207 Wells Hall). The final is scheduled for December 14, 12:45-2:45pm, and will be administered in our classroom (C207 Wells Hall).

Grading: The homework assignments are meant to help you learn and not meant to penalize your grade, so please do every problem. Each homework assignment is worth 2 points and scored as follows:

Not turned in	0 points
Turned in with minimal effort and/or poor presentation	1 point
Turned in with substantial effort and excellent presentation	2 points

Your final grade is calculated as follows:

Homework assignments:	50% = 12 assignments, drop lowest 2, rest 5% each
Midterm exam:	20%
Final exam:	30%

ADA statement: The American with Disabilities Act requires that reasonable accomodations be provided for students with physical, sensory, cognitive, systemic, learning, and/or psychiatric disabilities. Please contact me at the beginning of the semester to discuss any such accommodations you may require for the course.

Tentative Schedule				
Sep 2,4:	Introduction to course and MATLAB	Keshet 6-8		
1D linear difference eqs	Modeling and simulating cell division	Allman 1-5		
Sep 9,11:	Single-species population models	Keshet 39-55		
difference eqs	Allee effect, tragedy of the commons	Allman 11-24		
Sep 14,16,18:	Discrete logistic equation (HW1 due Sep 14)	Keshet 44-49		
1D nonlinear difference eqs	Periodic solutions Period-doubling route to chaos	Vries 18-25 Allman 24-28		
Sep 21,23,25: 2D linear difference eqs	Age-structured population models (HW2 due Sep 21) Linear algebra: matrices, vectors, determinants, traces, eigenvalues, eigenvectors, generalized eigenvectors	Keshet 13-29 Allman 41-83		
Sep 28,30, Oct 2:	Linear algebra continued (HW3 due Sep 28)	Keshet 13-29		
2D linear difference eqs	Perron-Frobenius theorem Age-structured population models continued	Allman 41-83		
Oct 5,7,9:	Host-parasitoid systems (HW4 due Oct 5)	Keshet 55-71		
2D nonlinear difference eqs	Taylor expansion of vector-valued functions, Jacobian matrix	Vries 36-47 Allman 85-101		
Oct $12,14$:	Review for midterm on Oct 12 (HW5 due Oct 12)			
Midterm	Midterm on Oct 14 Class canceled on Oct 16			
	Ordinary Differential Equations			
Oct 19,21,23: 1D linear and nonlinear ODEs	Single-species population models Separation of variables, integrating factors Equilibria, stability, phase-line analysis	Keshet 164-171, 210-218 Vries 55-60		
Oct 26,28,30:	Solving systems of linear ODEs (HW6 due Oct 26)	Keshet 171-193		
2D linear ODEs	Phase-plane analysis of the origin Classification of equilibria: node, saddle, focus, center	Vries 66-74		
Nov 2,4,6:	Predator-prey systems (HW7 due Nov 2)	Keshet 171-193, 218-231		
2D nonlinear ODEs	Lotka-Volterra equations	vries 66-79		
Nov 9,11,13:	Chemical reactions (HW8 due Nov 9)	Keshet 271-280		
2D nonlinear ODEs	Law of mass action Michaelis-Menten reactions	Vries 60-66		
Nov 16,18,20:	Chemical reactions continued (HW9 due Nov 16)	Keshet 271-299		
2D nonlinear ODEs	Nondimensionalization, quasi-steady-state approximation Cooperative/inhibitive reactions	Vries 60-66		
Nov 23,25: 2D ODEs	Bifurcations, existence of limit cycles (HW10 due Nov 23) Poincaré-Bendixon theorem, Hopf bifurcation theorem	Keshet 327-330, 341-346 Vries 83-88		
Nov 30, Dec 2,4 2D ODEs	Neural models (HW11 due Nov 30) Hodgkin-Huxley equations, FitzHugh-Nagumo equations	Keshet 311-341		
Dec 7,9,11: 2D ODEs	Oscillations in chemical reactions (HW12 due Dec 7) Review for final	Keshet 352-360		
D 14	Final Exam			

Dec 14

Final exam, 12:45-2:45pm, C207 Wells Hall