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12.2 Vectors

Some things that we measure are determined simply by their

magnitude, e.g., length, time, mass, etc. Others require more

information. For example, to describe velocity one needs the “speed”

and direction.

Component Form

In mathematics (and physics...) such quantities are called vectors and

are represented by a directed line segment.
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Definition. A vector in the plane (or in space) is a directed line

segment. The directed line segment OP has initial and terminal points

O and P respectively and its length (also called magnitude) is denoted

by
∣
∣OP

∣
∣. Two vectors are equal if the have the same length and

direction.
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It follows from this last statement that the three directed line segments

in the figure below represent the same vectors since they have the

same length and direction.
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Now let ~v = XY (e.g., as shown in the above sketch). Each of the other

directed line segments in the above sketch is also a representative of

~v. The directed line segment whose initial point is located at the origin

is the representative of ~v in standard position and usually our choice

candidate to “represent” ~v.

With this agreement we can now represent ~v in component form by

simply indicating the coordinates of the terminal point (the initial point

assumed to be the origin).
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Definition. Vectors - Component Form

Suppose that ~v is the vector in the plane whose initial point is the origin

and whose terminal point is (v1, v2). Then the component form of ~v

~v = 〈v1, v2〉

Of course, in three dimensions we have

~v = 〈v1, v2, v3〉

Remark.

i. If ~v = 〈v1, v2, v3〉 then the real numbers v1, v2, v3 are called the

components of ~v.

ii. Let P = P (x1, y1, z1) and Q = Q (x2, y2, z2) and let ~v = PQ. Then

the component form of ~v is

~v = 〈x2 − x1, y2 − y1, z2 − z1〉

Example 1. Let P = (2, 3,−4) and Q = (1,−1, 2). Find the component

form of ~v = PQ.
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The magnitude or length of the vector ~v is the length of any of its

equivalent directed line segments and is denoted |~v| or ‖~v‖. Notice that

if ~v = 〈v1, v2, v3〉 = 〈x2 − x1, y2 − y1, z2 − z1〉 then

‖~v‖ =
√

v2
1
+ v2

2
+ v2

3
(1)

=

√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

(2)

Example 2. Find the magnitude of the vector from the previous

example. Recall that ~v = 〈−1,−4, 6〉 so that

‖~v‖ =
√

(−1)2 + (−4)2 + (6)2

=
√
53
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Vector Arithmetic

Definition. Let ~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉 and let k ∈ R. (The

real number k is called a scalar for reasons that will become clear

below.). Then we define two new vectors ~u + ~v and k~u as follows.

Vector Addition: ~u + ~v = 〈u1 + v1, u2 + v2, u3 + v3〉 and

Scalar Multiplication: k ~u = 〈ku1, ku2, ku3〉.

Remark. It is important to emphasize that these operations yield vector

quantities. In other words, the collection of vectors are closed under

vector addition and scalar multiplication. Also, vector arithmetic has

geometric interpretations.

i. Vector addition can be visualized geometrically using the

parallelogram law.

ii. The vector k~u is a “scaled” version of ~u.

The example below illustrates these ideas.
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Example 3. Let ~u = 〈3, 4〉 and ~v = 〈1,−2〉. Find ~u + ~v and
1

2
~u.

1. ~u + ~v = 〈3 + 1, 4 + (−2)〉 = 〈4, 2〉.

~u

~v

~u
~v

~u + ~v

2.
1

2
~u = 〈3/2, 2〉.

~u

~u

1/2 ~u
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Example 4. Let ~u = 〈3, 4〉 and ~v = 〈1,−2〉. Find 2~u− ~v and ‖3~v‖.

It is important to mention the zero vector 0 = 〈0, 0〉 or 0 = 〈0, 0, 0〉 as the

only vector of zero length and any direction.

Proposition 1.

(3) ‖k~u‖ = |k|‖~u‖, k ∈ R

Proof. Write ~u = 〈u1, u2, u3〉 and let k ∈ R.

‖k~u‖2 = ‖〈ku1, ku2, ku3〉‖2

= (ku1)
2 + (ku2)

2 + (ku3)
2

= k2
(
u2
1
+ u2

2
+ u2

3

)

= k2‖~u‖2

Now the result follows by taking square roots. (Why?)
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We list several other important properties of vectors.

Proposition 2. Vector Properties

Let ~u,~v, ~w be vectors and a, b ∈ R. Then

1. ~u + ~v = ~v + ~u

2. (~u + ~v) + ~w = ~u + (~v + ~w)

3. ~u + 0 = ~u

4. ~u + (−~u) = 0

5. 0~u = 0

6. 1~u = ~u

7. a (b~u) = (ab) ~u

8. a (~u + ~v) = a~u + a~v

9. (a + b) ~u = a~u + b~u

Proof. Exercise.

Remark. Property 4 should be reworded. It should say that for each

vector ~u there is a unique vector ~v such that ~u + ~v = 0. The vector ~v is

usually denoted −~u. Please look these over very carefully.
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Proposition 3. Vector Properties (cont.)

10. −1~u = −~u

Proof. We need to show that −1~u is the additive inverse of ~u. We could

prove these by appealing to the component definitions of scalar

multiplication. Instead we try another approach.

Identify the vector properties from Proposition 2 that are used in the

proof below.

0 = 0~u

= (1 +−1)~u

= 1~u +−1~u

= ~u +−1~u

and the result follows. Why?
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Unit Vectors

A vector of length 1 is called a unit vector. It is convenient to introduce

the following unit vectors (called the standard unit vectors).

~i = i = 〈1, 0, 0〉
~j = j = 〈0, 1, 0〉
~k = k = 〈0, 0, 1〉

Now if ~u = 〈u1, u2, u3〉 then

~u = 〈u1, u2, u3〉

= 〈u1, 0, 0〉 + 〈0, u2, 0〉 + 〈0, 0, u3〉

= u1〈1, 0, 0〉+ u2〈0, 1, 0〉+ u3〈0, 0, 1〉

= u1 i + u2 j + u3 k

Remark. We often refer to u1 i + u2 j + u3 k as a linear combination of

the vectors i, j, and k. Also, u1, u2, and u3 are called, resp., the

i, j, and k components of ~u At first glance this notation may seem

tedious but it does have some advantages (which will become clearer

later in the course).
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Now suppose that ~u 6= 0 then ‖~u‖ 6= 0 and

1 =
1

‖~u‖ ‖~u‖

= ‖ 1

‖~u‖ ~u‖, (by Proposition 1)

= ‖ 1

‖~u‖
︸︷︷︸

scalar

~u
︸︷︷︸

vector

‖

So the vector
1

‖~u‖ ~u is a unit vector in the direction of ~u and is called

the direction of ~u. And every non-zero vector can be written as

(4) ~u = ‖~u‖
︸︷︷︸

length

· 1

‖~u‖~u
︸ ︷︷ ︸

direction

Example 5. Let ~u = 3 i− 2 j. Decompose ~u as shown in equation (4). In

other words, rewrite ~u as a length × direction vector.


