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14.4 Tangent Planes and Linear Approximations

The Chain Rule

Theorem 1. Chain Rule for Functions of Three Independent

Variables

If w = f (x, y, z) is differentiable and x, y and z are differentiable

functions of t, then w is a differentiable function of t and

(1)
dw

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

Now let

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

and as usual, let

r = x(t) i + y(t) j + z(t)k

Then (1) can be restated as

(2)
dw

dt
= ∇f · dr

dt

Remark. ∇f is called the gradient of f . We will prove this theorem in

section 14.5 and we will say more about the gradient in section 14.6.
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Tangent Planes and Normal Lines

If r = x(t) i + y(t) j + z(t)k is a smooth curve on the level surface

f (x, y, z) = c of a differentiable function f , then f (x(t), y(t), z(t)) is a

differentiable function of t. Differentiating both sides (with the help of

the Chain Rule and (2)) we obtain

d

dt
f (x(t), h(t), k(t)) =

d

dt
c

=⇒ ∇f · dr
dt

= 0

In other words, at every point along the (smooth) curve, ∇f is

orthogonal to the curve’s velocity vector. This leads to the following.

Definition. Tangent Plane, Normal Line

The tangent plane at P0 (x0, y0, z0) on the level surface f (x, y, z) = c of

a differentiable function f is the plane through P0 normal to ∇f (P0).

The normal line of the surface at P0 is the line through P0 parallel to

∇f (P0).

It follows from chapter 12 that Tangent Plane to f (x, y, z) = c at

P0 (x0, y0, z0) is given by

(3) fx (P0) (x− x0) + fy (P0) (y − y0) + fz (P0) (z − z0) = 0

and the Normal Line to f (x, y, z) = c at P0 (x0, y0, z0) is given by the

parametric equations

(4) x = x0 + fx (P0) t, y = y0 + fy (P0) t, z = z0 + fz (P0) t
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Example 1. Given the equation of the surface

x2 + 2xy − y2 + z2 = 7

and the point Q0 = Q0(1,−1, 3).

a. Find the equation of the tangent plane at Q0 on the given surface.

Let g(x, y, z) = x2 + 2xy − y2 + z2 − 7. Then

∇g = (2x + 2y) i + (2x− 2y) j + 2z k =⇒

∇g (Q0) = 4 j + 6 k

It follows that the equation of the tangent plane is given by

4(y + 1) + 6(z − 3) = 0

b. Find the normal line at Q0 on the surface.

This is easy.

x = 1

y = −1 + 4t

z = 3 + 6t
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Standard Linear Approximation

In section 14.3 we discussed the following (two-dimensional) definition

of the “total” derivative.

Definition. Let f : D ⊂ R
2 → R and let (x0, y0) be an interior point of D.

Then f is differentiable at (x0, y0) if there are two numbers

f1 (x0, y0) and f2 (x0, y0) such that

(5)

lim
(x,y)→(x0,y0)

f (x, y)− f (x0, y0)− f1 (x0, y0) (x− x0)− f2 (x0, y0) (y − y0)
√

(x− x0)
2 + (y − y0)

2
= 0

Later we observed that f1 = fx and f2 = fy. Now let

L(x, y) = f (x0, y0) + f1 (x0, y0) (x− x0) + f2 (x0, y0) (y − y0) ,

then (5) says that f is differentiable at (x0, y0) if there is a linear function

L(x, y) such that

(6) lim
(x,y)→(x0,y0)

f (x, y)− L(x, y)
√

(x− x0)
2 + (y − y0)

2
= 0
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We know from experience that if the limit in (6) exists, then L(x, y) is

“close” to f (x, y) whenever (x, y) is close to (x0, y0). Just as we did in

calculus I, we can now define the linearization of a differentiable

function f .

Definition. Linearization

Suppose the f (x, y) is a differentiable function. Then the linearization

of f (x, y) at (x0, y0) is the function

(7) L(x, y) = f (x0, y0) + fx (x0, y0) (x− x0) + fy (x0, y0) (y − y0)

The approximation

(8) f (x, y) ≈ L(x, y)

is called the standard linear approximation of f at (x0, y0). It is a

good approximation of f for all (x, y) “near” (x0, y0).

Definition. The Error in the Standard Linear Approximation

The error in the approximation defined in (8) is denoted by E(x, y).

That is,

E(x, y) = f (x, y)− L(x, y)

It turns out that we can find an upper bound for this error.

Suppose that f and its first and second partials are continuous in a

region containing a rectangle R centered at (x0, y0). Suppose also that

M is an upper bound on R for |fxx| , |fyy| , and |fxy|. Then

(9) |E(x, y)| ≤ M

2
(|x− x0| + |y − y0|)2
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Example 2. Let f (x, y) = ex sin y.

a. Find the linearization L(x, y) of f at P0 = P0 (ln 2, π/2).

fx = ex sin y, =⇒ fx (ln 2, π/2) = 2

fy = ex cos y, =⇒ fy (ln 2, π/2) = 0

so that

L(x, y) = f (ln 2, π/2) + fx (ln 2, π/2) (x− ln 2) + fy (ln 2, π/2) (y − π/2)

= 2 + 2(x− ln 2)

b. Find an upper bound for the magnitude |E| of the error in the

approximation f (x, y) ≈ L(x, y) over the rectangle

R : |x− ln 2| ≤ 0.1, |y − π/2| ≤ 0.2.

The error is bounded by the formula

|E| ≤ M

2
(|x− ln 2| + |y − π/2|)2

where M is an upper bound of all of the second order partials of f

over the rectangle R. Now,

fxx = ex sin y =⇒ |fxx| = |ex sin y| ≤ ex ≤ eln 2+0.1, (x, y) ∈ R

and since

fyy = −ex sin y

fxy = fyx = ex cos y

we conclude that M = eln 2+0.1. Thus
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|E| ≤ eln 2+0.1

2
(0.1 + 0.2)2

=
eln 2+0.1

2
(0.09)

≤ 2.4

2
(0.09) = 0.108

c. Use the linearization of f (x, y) from part (a) to estimate f (0.75, 1.5).

We have

f (0.75, 1.5) ≈ L(0.75, 1.5)

= 2 + 2 (0.75− ln 2)

≈ 2 + 2 (0.75− 0.693)

≈ 2.114

According to MMA f (0.75, 1.5) ≈ 2.1117± 0.0001.
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Differentials and the Derivative

Let y = f (x) be a function and let ∆x represent the change in x. Then

the corresponding change in y is given by

∆y = f (x +∆x)− f (x)

In a first semester calculus class we saw that if f was differentiable at a

then

∆y = ∆f = f ′(a)∆x + ε∆x, where ε −→ 0 as ∆x −→ 0

Now suppose that z = f (x, y) and suppose that x changes from x0 to

x0 + ∆x and y changes from y0 to y0 +∆y. Then the corresponding

change in z is

∆z = f (x0 + ∆x, y0 + ∆y)− f (x0, y0)

This leads to the following definition.

Definition. If z = f (x, y), then f is differentiable at (x0, y0) if ∆z can be

expressed in the form

(10) ∆z = fx(x0, y0)∆x + fy(x0, y0)∆y + ε1∆x + ε2∆y

where ε1 −→ 0 and ε2 −→ 0 as (∆x,∆y) −→ (0, 0).

In other words, f is differentiable at (x0, y0) if the standard linearization

is a good approximation of f “near” (x0, y0).
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We recall the differential from first semester calculus. Let y = f (x) be

differentiable. Then the differential of y (or of f ) is given by

(11) dy = f ′(x)dx

The sketch below is helpful.

x x +∆x

f (x)

f (x + dx)

L(x + dx)

b

b

b

y = f (x)

y = L(x)

∆y = f (x + dx)− f (x)
dy = L(x + dx)− f (x)

As we saw with the standard linear approximation,

∆y ≈ dy

provided dx = ∆x is small.

Now suppose that z = f (x, y) and let dx and dy be independent

variables. We define the differential dz by

(12) dz = fx(x, y) dx + fy(x, y) dy =
∂z

∂x
dx +

∂z

∂y
dy

Observe that (8) can now be rewritten as

f (x, y) ≈ f (x0, y0) + dz
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Example 3. The height and diameter of a tin can is 6 in and 4 in

respectively. Use differentials to estimate the amount tin in the can if

the tin is 1/16 of an inch thick?

Solution:

Recall that the volume of a cylinder is given by the formula

V = πr2h. Now

dV = Vr dr + Vh dh

= 2πrhdr + πr2dh

Since dr = 1/16 and dh = 1/16 + 1/16 (top and bottom), it

follows that

dV = Vr(2, 6)
1

16
+ Vh(2, 6)

2

16

=
2π(2)(6)

16
+

8π

16

= 2π ≈ 6.28318 in3
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Remark. It’s not unreasonable to wonder what’s the big deal. After all

we can simply carry out the following calculation.

∆V = V (r + dr, h + dh)− V (r, h)

= π{(r + dr)2(h + dh)− r2h}
= π{r2h + r2dh + 2rhdr + 2rdrdh + dr2h + dr2dh− r2h}
= π(r2dh + 2rhdr)
︸ ︷︷ ︸

dV

+π(2rdrdh + dr2h + dr2dh)

And once again dr = 1/16 and dh = 2/16. Thus

∆V = 2π + π

(
8

162
+

6

162
+

2

163

)

≈ 6.28318 + 0.173340 ≈ 6.456525

However, the first calculation is much easier.
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Example 4. Let f (x, y) = 3x2y − x3
√
y.

a. Find the equation of the plane tangent to the surface z = f (x, y) at

P = P (2, 4).

Now let g(x, y, z) = f (x, y)− z. Then the question can be thought of

as finding plane tangent to the level surface g(x, y, z) = 0 at the

point

Q = Q(2, 4, f (2, 4)) = Q(2, 4, 32).

Now we may proceed as we did in Example 1.

∇g = gx i + gy j + gz k

= (6xy − 3x2
√
y) i +

(

3x2 − x3

2
√
y

)

j− k

and

∇g(Q) = 24 i + 10 j− k

As we saw on page 2, this vector is normal to the plane tangent to

the surface z = f (x, y) at Q. It follows that the equation of the plane

is

(13) 24(x− 2) + 10(y − 4)− 1(z − 32) = 0

b. Find the linearization of f (x, y) at P .

We could simply follow the recipe given by (7). However, it is easy

to see that this is equivalent to solving equation 13 for z. That is,

z = 32 + 24(x− 2) + 10(y − 4)

= f (P ) + fx(P )(x− 2) + fy(P )(y − 4)

= L(x, y)
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Example 5. The velocity v of a falling object in the absence of wind

resistance is given by v =
√
2hg. If the height h is measured with a

relative error of 3% and we use 10 m/s for the acceleration due gravity

g (instead of 9.81), use differentials to estimate the maximum relative

error when measuring v?

So dg/g = 0.19/9.81 ≈ 0.19/10 and

dv =
√
2

(
g dh

2
√
hg

+
h dg

2
√
hg

)

It follows that

dv

v
=
√
2

(
g dh

2
√
hg

1√
2hg

+
h dg

2
√
hg

1√
2hg

)

=
1

2

(
dh

h
+

dg

g

)

=
0.03 + 0.019

2
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Example 6. Consider the density formula ρ = m/v. If an object has a

mass m which is measured with a relative error of 2% and a volume v

which is measured with a relative error of 5%, find an upper bound of

the relative error of the density ρ.

dρ =
dm

v
− mdv

v2

so that

dρ

ρ
=

dm

v

v

m
− mdv

v2
v

m

=
dm

m
− dv

v

It follows that
∣
∣
∣
∣

dρ

ρ

∣
∣
∣
∣
=

∣
∣
∣
∣

dm

m
− dv

v

∣
∣
∣
∣

≤
∣
∣
∣
∣

dm

m

∣
∣
∣
∣
+

∣
∣
∣
∣

dv

v

∣
∣
∣
∣

= 0.02 + 0.05

Why were absolute value signs omitted in Example 5?

Remark. Recall that the triangle inequality states that if a and b are real

numbers, then

|a + b| ≤ |a| + |b|

Notice that we used the triangle inequality in the penultimate step

above.


