16.6

16.6 Introduction to Parametric Surfaces

Parametric Surfaces

In this section we study the vector valued function r(u, v) of two
parameters v and v. So let

(1) r(u,v) =x(u,v)i+y(u,v)j+ z(u,v)k

defined on a region D of the so-called uwv-plane.

The set of points (z,y, z) € R? with

(2) r=z(u,v), y=vyluv), z=z2wv), (uv)eD

is called a parametric surface S and the equations (2) are called the
parametric equations of S.
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Example 1. Identify and sketch the surface whose vector equation is

2 i
r(u,v):cosui—l—vj—k%k

The corresponding parametric equations are

3sinu

4

r=cosu, Y=v, 2z=

Notice that

922 +162°> = 9cos® u + 9sin’u =9

So that cross-sections parallel to the xzz-plane are ellipses. Since

y = v without restriction, we obtain an elliptical cylinder parallel to the
y-axis.
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Suppose now that we fix u = ug. Then ry(v) = r(ug, v) is a vector-valued
function of a single parameter v. Similarly, ro(u) = r(u, vy) is a
vector-valued function of the single parameter «. In each case, we
generate families of space curves that lie on the surface S. A few of
these surface curves are shown on the surface below (from the
previous example).
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It turns out to be very straightforward to find the parametric
representation for a given surface of the form z = f(z,y).

Example 2. Find the parametric representation of the paraboloid
z=x*+y? + 1L

We give two representations.

The Easy One: Herewe let z =z andy = y. Then z = 22 + y* + 1 s0
that
r(v,y)=zi+yj+ (@ +y*+ 1k

The More Useful Representation (perhaps): For this one we work
with the polar parameters r and 0. So let =z = rcosf and y = rsin 6. It
follows that z = 2 + 1 so that

r(r,0) =rcosfi-+rsindj+ (r*+1)k

Example 3. Can you describe the surface defined by the vector
equation

r(¢,0) = asingcosfi+ asingsindj+ acospk

forsomea > 0? Here 0 < ¢ <mand 0 < < 2r.
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Parametric Surfaces and Tangent Planes

Example 4. Find the equation of the tangent plane for the surface
defined by the vector equation at P, = Py(—6, 1, 8).

S or(s,t) = (25 — 17, 5,4t)
Notice that the r(1,2) = F,. Now what can we say about the parametric
curves r,(s) =r(s,2) and ry(t) = r(1,¢)?

Clearly, both curves lie on S and they intersect at Fy,. Also, r/(1) is
tangent to S at 5 and r;(2) is tangent to S at F. It follows that
r/ (1) x r;(2) is orthogonal to the surface S at F,. But

1)=r,(1,2) = (4,1,0)
r,(2) =r,(1,2) = (—12,0,4)
In particular,

r.(1,2) x r,(1,2) = (4, -16,12)

It follows that the equation of the tangent plane at F, is given by
4z +6) —16(y —1) +12(z — 8) = 0
Or, after dividing through by 4 and rearranging, we obtain

r—4y+3z2=14

|s there any way that we can confirm this result independently?
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Example 5. Redo the previous example by recognizing S as the
level surface of some function (of three variables).

Notice that

It follows that S is the level surface f(x,y, z) = 0 of the function
f(z,y, 2) = 2y* — 23/64 — x. Following the recipe from section 14.4 we
have

fx:_l

fy:4y = fy(PO):4
fo=-32/64 = f.(P)=-3

and (—1,4, —3) is normal to the tangent plane x — 4y + 3z = 14, as
expected.
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Example 6. Let S be a sphere of radius 4 centered at the origin.
Find the equation of the plane tangent S to a at Qy(3,v/3,2). In
Example 3 we saw that S can be defined by the vector equation

r(¢,0) =4singpcosf@i+ dsingsinfj—+4cospk

It is routine to show that r(7/3,7/6) = Qy. Now
rs = (4cospcosh, 4cospsinf, —4sin ¢)
— ry(n/3,7/6) = < ,1,—2\/§>
= (—4sin ¢sin 6, 4sin ¢ cos b, 0)
— ry(n/3,7/6) = <—\/§,3,o>

An easy calculation shows that

I‘¢ X Iy = <6\/§, 6,4\/§>

It follows that the equation of the tangent plane at @), is given by

6vV3(x — 3) +6(y — V3) +4V3(2 —2) =0

Why is the last example easy to check independently?



