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16.6 Introduction to Parametric Surfaces

Parametric Surfaces

In this section we study the vector valued function r(u, v) of two

parameters u and v. So let

(1) r(u, v) = x(u, v) i + y(u, v) j + z(u, v)k

defined on a region D of the so-called uv-plane.

The set of points (x, y, z) ∈ R
3 with

(2) x = x(u, v), y = y(u, v), z = z(u, v), (u, v) ∈ D

is called a parametric surface S and the equations (2) are called the

parametric equations of S.
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Example 1. Identify and sketch the surface whose vector equation is

r(u, v) = cosu i + v j +
3 sinu

4
k

The corresponding parametric equations are

x = cosu, y = v, z =
3 sinu

4

Notice that

9x2 + 16z2 = 9 cos2 u + 9 sin2 u = 9

So that cross-sections parallel to the xz-plane are ellipses. Since

y = v without restriction, we obtain an elliptical cylinder parallel to the

y-axis.
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Suppose now that we fix u = u0. Then r1(v) = r(u0, v) is a vector-valued

function of a single parameter v. Similarly, r2(u) = r(u, v0) is a

vector-valued function of the single parameter u. In each case, we

generate families of space curves that lie on the surface S. A few of

these surface curves are shown on the surface below (from the

previous example).
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It turns out to be very straightforward to find the parametric

representation for a given surface of the form z = f (x, y).

Example 2. Find the parametric representation of the paraboloid

z = x2 + y2 + 1.

We give two representations.

The Easy One: Here we let x = x and y = y. Then z = x2 + y2 + 1 so

that

r(x, y) = x i + y j + (x2 + y2 + 1)k

The More Useful Representation (perhaps): For this one we work

with the polar parameters r and θ. So let x = r cos θ and y = r sin θ. It

follows that z = r2 + 1 so that

r(r, θ) = r cos θ i + r sin θ j + (r2 + 1)k

Example 3. Can you describe the surface defined by the vector

equation

r(φ, θ) = a sinφ cos θ i + a sinφ sin θ j + a cosφk

for some a > 0? Here 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π.
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Parametric Surfaces and Tangent Planes

Example 4. Find the equation of the tangent plane for the surface

defined by the vector equation at P0 = P0(−6, 1, 8).

S : r(s, t) = 〈2s2 − t3, s, 4t〉

Notice that the r(1, 2) = P0. Now what can we say about the parametric

curves ra(s) = r(s, 2) and rb(t) = r(1, t)?

Clearly, both curves lie on S and they intersect at P0. Also, r′a(1) is

tangent to S at P0 and r′b(2) is tangent to S at P0. It follows that

r′a(1)× r′b(2) is orthogonal to the surface S at P0. But

r′a(1) = rx(1, 2) = 〈4, 1, 0〉
r′b(2) = ry(1, 2) = 〈−12, 0, 4〉

In particular,

rx(1, 2)× ry(1, 2) = 〈4,−16, 12〉

It follows that the equation of the tangent plane at P0 is given by

4(x + 6)− 16(y − 1) + 12(z − 8) = 0

Or, after dividing through by 4 and rearranging, we obtain

x− 4y + 3z = 14

Is there any way that we can confirm this result independently?
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Example 5. Redo the previous example by recognizing S as the

level surface of some function (of three variables).

Notice that

x = 2s2 −
(

4t

4

)3

= 2y2 − z3

64

It follows that S is the level surface f (x, y, z) = 0 of the function

f (x, y, z) = 2y2 − z3/64− x. Following the recipe from section 14.4 we

have

fx = −1

fy = 4y =⇒ fy(P0) = 4

fz = −3z2/64 =⇒ fz(P0) = −3

and 〈−1, 4,−3〉 is normal to the tangent plane x− 4y + 3z = 14, as

expected.
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Example 6. Let S be a sphere of radius 4 centered at the origin.

Find the equation of the plane tangent S to a at Q0(3,
√
3, 2). In

Example 3 we saw that S can be defined by the vector equation

S : r(φ, θ) = 4 sinφ cos θ i + 4 sinφ sin θ j + 4 cosφk

It is routine to show that r(π/3, π/6) = Q0. Now

rφ = 〈4 cosφ cos θ, 4 cosφ sin θ,−4 sinφ〉

=⇒ rφ(π/3, π/6) =
〈√

3, 1,−2
√
3
〉

rθ = 〈−4 sinφ sin θ, 4 sinφ cos θ, 0〉

=⇒ rθ(π/3, π/6) =
〈

−
√
3, 3, 0

〉

An easy calculation shows that

rφ × rθ =
〈

6
√
3, 6, 4

√
3
〉

It follows that the equation of the tangent plane at Q0 is given by

6
√
3(x− 3) + 6(y −

√
3) + 4

√
3(z − 2) = 0

Why is the last example easy to check independently?


