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Double Integrals in Polar Coordinates

A quick review. We recall the following definition from Math 133.

Definition. Polar Coordinates

We fix a point called the pole (at the origin, O) and an initial ray from

the pole (the positive x-axis). Then we locate each point P in the plane

by the ordered pair (r, θ) where r is the directed distance from the

origin and θ is the directed angle (or arc length, if we agree to use the

unit circle) from the initial ray to the ray OP . It is customary to follow

the usual conventions from trigonometry. In particular,

counter-clockwise rotations define positive angles.
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The following “polar-grid” should make it easier to plot points in polar

coordinates.
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Example 1. Plot each of the following polar coordinates in the

xy-plane. Also, find all polar coordinate pairs for each of the given

points.

a. (3, 2π/3)

For positive radii, we have
(

3,
2π

3
+ 2π · k

)

, k ∈ Z.

For negative radii,
(

−3,
−π

3
+ 2π · k

)

, k ∈ Z.

b. (−2, π/4)

We have
(

−2,
π

4
+ 2π · k

)

, k ∈ Z

and
(

2,
5π

4
+ 2π · k

)

, k ∈ Z.
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Polar Equations and Graphs

Let a and b be real constants.

In Cartesian coordinates, the basic equations x = a and y = b

generate, respectively, vertical and horizontal lines in the xy-plane.

Example 2. Circles

The polar equation r = ±a generates a circle of radius |a| in the

xy-plane. (Why?)

radius = |a|

x

y
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Polar and Rectangular Coordinates

From elementary trigonometry we have the following equations that

allow one to convert from polar to rectangular or from rectangular to

polar coordinates (and hence, equations).

x = r cos θ, y = r sin θ(1)

x2 + y2 = r2, tan θ =
y

x
(2)
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Example 3. Rectangular to Polar

Find the equivalent equation in polar coordinates and sketch the graph.

a. x2 + y2 = 9.

From (2) we have

x2 + y2 = r2 = 9

or

r = 3

So we have a circle of radius 3 centered at the origin.

3 x

y

b. x2 + y2 − 4y + 3 = 0
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First, we complete the square.

x2 + y2 − 4y + 4 = 1

x2 + (y − 2)2 = 12

So, this is a circle of radius 1 centered at (0, 2). Now, (2) implies

r2 − 4r sin θ = −3

x

y
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Example 4. Polar to Rectangular

Find the equivalent equation in rectangular coordinates and sketch the

graph.

r = 2 cos θ − sin θ

Multiplying both sides by r, we obtain

r2 = 2r cos θ − r sin θ

x2 + y2 = 2x− y

It is now easy to see that this is the equation of a circle.

−1 1 2 3

−2

−1

1

b
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Double Integrals

θ = α

θ = β

r = g1(θ)

r = g2(θ)

r = a

Suppose that f (r, θ) is defined over the shaded region R shown in the

sketch. Here the continuous curves g1 and g2 satisfy the inequality

0 ≤ g1(θ) ≤ g2(θ) ≤ a

for α ≤ θ ≤ β.

As before, we form the (Riemann) Sum

Sn =

n
∑

k=1

f (rk, θk) ∆Ak(3)
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If f is continuous on R then the sum in (3) will approach a limit as ∆Ak

goes to 0. Thus

lim
∆Ak→0

Sn =

¨

R

f (r, θ) dA(4)

As usual, we call this limit the double integral of f over R. However, we

have another problem. What is dA?

b

△θ

Recall that the area of a circle is πr2 = 2πr2/2. It follows that the area of

a sector with central angle θ is given by

AS =
θr2

2
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It follows that the area of the (differential) region shown above is

△A =
△θ

2

[

r22 − r21
]

=
△θ

2

[

(

rk +
△r

2

)2

−
(

rk −
△r

2

)2
]

=
△θ

2

[

✓
✓✓r2k + rk△r +

❅
❅
❅
❅

△r2

4
−

✓
✓✓r2k + rk△r −

❅
❅
❅
❅

△r2

4

]

= 2
(rk
2

)

△r△θ

so that

dA = r dr dθ

Now (4) can also be written as

(5)

¨

R

f (r, θ) dA =

¨

R

f (r, θ) r dr dθ
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Theorem 1. Fubini’s Theorem in Polar Coordinates

¨

R

f (r, θ) dA =

ˆ θ=β

θ=α

ˆ r=g2(θ)

r=g1(θ)

f (r, θ) r dr dθ(6)

From this we immediately get

Area in Polar Coordinates

A =

ˆ ˆ

R

r dr dθ(7)



15.4 13

Example 5. Computing Areas in Polar Coordinates

Let R be the shaded region in the sketch below.

−1 1 2

−1

1

2

r = 1 + sin θ
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a. Find the area of the shaded region.

By equation (7) and Fubini’s Theorem

A =

¨

R

r dr dθ

=

ˆ θ=π/2

θ=0

ˆ r=1+sin θ

r=0

r dr dθ

= . . .

b. Let f (r, θ) = r cos θ and compute the double integral of f over the

given region.

¨

R

f (r, θ) dA =

¨

R

f (r, θ) r dr dθ

=

ˆ θ=π/2

θ=0

ˆ r=1+sin θ

r=0

r2 cos θ dr dθ

= . . .
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b

b

b

b

x

y

R

y = 3x

y = 5x

y =
6

x

y =
2

x

Figure 1: Region R from Example 6 (not to scale)

Example 6. In section 15.10, we found the area of the region R in

Figure 1 by a change of variables. This time we will try switching to

polar coordinates.

Area of R =

¨

R

dA =

¨

S

r dr dθ

=

ˆ tan−1 5

tan−1 3

ˆ

√
12

sin 2θ

√
4

sin 2θ

r dr dθ

=
1

2

ˆ tan−1 5

tan−1 3

12

sin 2θ
− 4

sin 2θ
dθ

= 4

ˆ tan−1 5

tan−1 3

csc 2θ dθ

= −2 ln(csc 2t + cot 2t)
tan−1 5

tan−1 3

...

= −2 ln 3/5

as we saw before.
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Example 7. More Polar Integrals

1

1 r = 2 cos θ

a. Find the area of the shaded region above.

A =

¨

R

dA

=

ˆ π/2

0

ˆ r=2 cos θ

r=0

r dr dθ

=
1

2

ˆ π/2

0

(2 cos θ)2dθ

=

ˆ π/2

0

(1 + cos 2θ)dθ

=

(

θ +
sin 2θ

2

) π/2

0

=
π

2

as expected.



15.4 17

b. Let f (r, θ) = r sin θ. Find
˜

R f dA.

Proceeding much as did in the previous example, we have

¨

R

f dA =

ˆ π/2

0

ˆ r=2 cos θ

r=0

r2 sin θ dr dθ

=
1

3

ˆ π/2

0

sin θ r3
r=2 cos θ

r=0

dθ

=
8

3

ˆ π/2

0

sin θ cos3 θ dθ

=
8

3

ˆ 1

0

u3 du

=
2

3
u4

1

0

=
2

3
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Example 8. Converting from Rectangular to Polar Coordinates

Evaluate the integrals below.

a.

¨

Unit Disk

√

x2 + y2 dA

Since the integrand has no elementary antiderivative with respect

to x or y, we try polar coordinates. Thus

¨

Unit Disk

√

x2 + y2 dA =

ˆ 2π

0

ˆ 1

0

√
r2 r dr dθ

= 2π

ˆ 1

0

r2 dr

= 2π
r3

3

1

0

=
2π

3

b.

ˆ 1

0

ˆ

√
1−x2

−
√
1−x2

1

(1 + x2 + y2)2
dy dx
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It is possible to evaluate improper double integrals using many of the

same ideas from Calc II. Consider the following example

(cf. exercise 15.4.40).

Example 9. Improper Double Integrals

Evaluate I =

ˆ ∞

0

e−x2 dx.

Let f (x) = e−x2 and let g(x) = 1/x2. Since

lim
x→∞

f (x)

g(x)
= 0

we can use the Limit Comparison Test to conclude that I < ∞. We

now use the following (clever) technique to compute I.
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I2 =

(
ˆ ∞

0

e−x2 dx

)2

=

(
ˆ ∞

0

e−x2 dx

)(
ˆ ∞

0

e−y2 dy

)

=

ˆ ∞

0

ˆ ∞

0

e−(x
2+y2) dx dy

=

ˆ π/2

0

ˆ ∞

0

e−r2r dr dθ

=
π

2

ˆ ∞

0

e−r2r dr

=
−π

4
e−r2

∞

0

=
−π

4
(0− 1)

=
π

4

It follows that I =

√
π

2
and, by symmetry,

ˆ ∞

−∞
e−x2 dx =

√
π
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Remark. The integral
ˆ ∞

−∞
e−x2 dx

is related to the normal distribution function from probability and

statistics. In fact, the function

f (x) =
e−x2/2

√
2π

is the familiar “bell curve”.

1

Can you evaluate

ˆ ∞

−∞

e−x2/2

√
2π

dx?
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Fubini’s Theorem and Unbounded Regions

In section 15.1 Fubini’s Theorem allowed us to switch the order of

integration whenever it was convenient. The situation becomes more

complex when the region R is unbounded. Consider the following

example.

Example 10. Let R be the first quadrant and let f (x, y) be defined as

follows. If (x, y) is a point inside of a lightly shaded square (see the

sketch below), then f (x, y) = 1. If (x, y) is a point inside of a darkly

shaded square, then f (x, y) = −1. Otherwise, let f (x, y) = 0.

1 2 3 4 5

1

2

3

4

5

Now evaluate
ˆ ∞

0

ˆ ∞

0

f (x, y) dx dy

and
ˆ ∞

0

ˆ ∞

0

f (x, y) dy dx
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Notice that
ˆ ∞

0

ˆ ∞

0

f (x, y) dx dy = 1 + (−1 + 1) + (−1 + 1) + · · ·

= 1 + 0 + 0 + · · · = 1

and
ˆ ∞

0

ˆ ∞

0

f (x, y) dy dx = (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

= 0 + 0 + 0 + · · · = 0

We conclude that
˜

R f (x, y) dA does not exist. Why?

Remark. The example above can be modified so that f is continuous

with the same result. That is, the integral fails to exist.

It turns out that Fubini’s Theorem needs to be used with care over

unbounded regions. In fact, the pathologies in the previous example do

not occur if f (x, y) ≥ 0 over the given (unbounded) region.


