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15.7 Triple Integrals in Rectangular Coordinates

Triple Integrals

Suppose that f (x, y, z) is defined on a closed bounded region D in

space. Can we define the integral of f over D? Proceeding in the usual

way (that is, partitioning the region D, etc.), we obtain the following

(Riemann) sum

Sn =

n
∑

k=1

f (xk, yk, zk) △Vk

where △Vk = △xk△yk△zk.

Now we take the limit of the above expression as ‖P‖ → 0, where ‖P‖
is the norm of the partition P . If the limit exists we say that f is

integrable over D and write

˚

D

f (x, y, z) dV = lim
‖P‖→0

n
∑

k=1

f (xk, yk, zk) △Vk

It turns out that if f is continuous over the closed bounded region D

then f is integrable (as long as D is “reasonable”). Also, the above

integral can actually be computed using an iterated integral as we did

in the two-dimensional case.
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The volume of a region in space.

Definition. Volume

The volume of a closed bounded region in space is

V =

˚

D

dV

Theorem 1. Properties of Triple Integrals

If F = F (x, y, z) and G = G(x, y, z) are continuous, then

1.
˝

D k F dV = k
˝

D F dV, k ∈ R

2.
˝

D (F ±G) dV =
˝

D F dV ±
˝

D GdV

3. F ≥ 0 =⇒
˝

D F dV ≥ 0

4. F ≥ G on D =⇒
˝

D F dV ≥
˝

D GdV

5. If D is the union of nonoverlapping cells D1, D2, . . . , Dn then

˚

D

F dV =

˚

D1

F dV +

˚

D2

F dV + · · · +
˚

Dn

F dV
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Example 1.

Evaluate the following integrals

a.

ˆ 3

0

ˆ 2

0

ˆ x2+3y2

0

dz dy dx

=

ˆ 3

0

ˆ 2

0

(x2 + 3y2) dy dx

=

ˆ 3

0

(x2y + y3)
y=2

y=0

dx

=

ˆ 3

0

(2x2 + 8) dx

=

(

2x3

3
+ 8x

) 3

0

= 18 + 24

Notice that this just the volume of the region between the xy-plane

and the surface z = f (x, y) = x2 + 3y2 over the rectangle

[0, 3]× [0, 2].
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b.
ˆ

√
2

0

ˆ

√
4−2y2

0

ˆ

8−x2−y2

x2+3y2
dz dx dy = I

=

ˆ

√
2

0

ˆ

√
4−2y2

0

[(

8− x2 − y2
)

−
(

x2 + 3y2
)]

dx dy

=

ˆ

√
2

0

ˆ

√
4−2y2

0

[

8− 2x2 − 4y2
]

dx dy

=

ˆ

√
2

0

[

8x− 2x3

3
− 4y2x

] x=
√

4−2y2

x=0

dy

=

ˆ

√
2

0

[

8
√

4− 2y2 − 2

3
(4− 2y2)3/2 − 4y2

√

4− 2y2
]

dy

= I1 + I2 + I3

Now let
√
2y = 2 sin θ. Then dy =

√
2 cos θ dθ, etc. and

I1 = 8

ˆ

√
2

0

√

4− 2y2 dy

= 16
√
2

ˆ π/2

0

cos2 θ dθ

= 8
√
2

ˆ π/2

0

(1 + cos 2θ) dθ

= 4
√
2π

We leave it as an exercise to confirm that

I2 =
−2

3

ˆ

√
2

0

(4− 2y2)3/2 dy = −
√
2π

I3 = −4

ˆ

√
2

0

y2
√

4− 2y2 dy = −
√
2π

It follows that

I = I1 + I2 + I3

= 2
√
2π
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x y

z

Figure 1: T (x, y, z) = 12xz ezy
2

defined over a region in space

c. Let T (x, y, z) = 12xz ezy
2

. Evaluate the integral below.

ˆ 1

0

ˆ 1

0

ˆ 1

x2
T (x, y, z) dy dx dz
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Notice that the integrand has no elementary antiderivative.

Perhaps a change in the order of integration might help, as we saw

with double integrals. We try to integrate first with respect to x.

It follows that the limits of integration of the inner-most integral are

from x = 0 to x =
√
y. What about the remaining limits? Once we

complete the integration in the x-direction, we project the solid onto

the remaining coordinate system. In this case, that means we

project the solid onto the yz-plane to obtain the sketch below (on

the right).

x y

z

x y

z (not to scale)

Notice that we end up with the one by one square [0, 1]× [0, 1]. Thus

ˆ 1

0

ˆ 1

0

ˆ 1

x2
12xz ezy

2

dy dx dz =

ˆ 1

0

ˆ 1

0

ˆ

√
y

0

12xz ezy
2

dx dy dz

=

ˆ 1

0

ˆ 1

0

12z ezy
2

ˆ

√
y

0

x dx dy dz

=

ˆ 1

0

ˆ 1

0

6z ezy
2 [

(
√
y)2 − 0

]

dy dz

=

ˆ 1

0

ˆ 1

0

6yz ezy
2

dy dz = I
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Now let w(y) = zy2. Then dw = 2zy dy, w(0) = 0 and w(1) = z. Then

I =

ˆ 1

0

ˆ z

0

3 ew dw dz

= 3

ˆ 1

0

ew
z

0

dz

= 3

ˆ 1

0

(ez − 1) dz

= 3 (ez − z)
1

0

= 3(e− 2)

How might we interpret this result?

Suppose that the integrand, T (x, y, z) = 12xz ezy
2

gave the

temperature over the region D shown in Figure 1. An easy

calculation shows that the volume of D is

V =

ˆ 1

0

ˆ 1

0

ˆ 1

x2
dy dx dz =

2

3

Then the average temperature over the region would be

Tavg =
1

V

ˆ 1

0

ˆ 1

0

ˆ 1

x2
T (x, y, z) dy dx dz

=
1

2/3
3(e− 2) ≈ 3.232
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Example 2. Volumes

The volume of a the solid shown is given by the triple integral

ˆ 2.5

−2.5

ˆ 6.25

x2

ˆ (6.25−y)/2.5

0

dz dy dx

x y

z
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Find the volume by evaluating the iterated integral above.

Here and below we let c = 2.5.

V =

ˆ c

−c

ˆ c2

x2

ˆ (c2−y)/c

0

dz dy dx

=
1

c

ˆ c

−c

ˆ c2

x2
(c2 − y) dy dx

=
1

c

ˆ c

−c

(

c2y − y2

2

) c2

x2
dx

=
1

c

ˆ c

−c

[(

c4 − c4

2

)

−
(

c2x2 − x4

2

)]

dx

and since the integrand is even

=
2

c

ˆ c

0

(

c4

2
− c2x2 +

x4

2

)

dx

=
1

c

ˆ c

0

(

c4 − 2c2x2 + x4
)

dx(1)

=
2

c

(

c4x

2
− c2x3

3
+

x5

10

) c

0

=
2

c

(

c5

2
− c5

3
+

c5

10

)

=
125

6
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Example 3. Changing the Order of Integration

Now rewrite the integral from the last example by changing the order of

integration using each of the other 5 possibilities.

x
y

z

Figure 2: Changing the Order of Integration



15.7 11

First consider the following profiles.

x y

z
yz-plane

x

yz

xy-plane

x y

z

xz-plane
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(a) We first try the order dy dz dx. We use the sketches above to help

us determine the new limits of integration.

(i) We first determine the new limits for y (as a function of x and z).

Notice that the entry surface (red arrow) is parallel to the z-axis

and hence independent of z. It follows that y = x2.

The exit surface (green arrow) is parallel to the x-axis and

hence independent of x. Thus we solve the equation below for

y = f (z).

y

6.25
+

z

2.5
= 1

It follows that

y = f (z)

= 6.25
(

1− z

2.5

)

= c2 − cz

and x2 ≤ y ≤ c2 − cz.

Notice that this information must be gathered from the main

sketch.
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(ii) Now z ranges from 0 to some unknown function z = h(x) (see

the xy-plane view). To find h(x), let P = P (x, y, z) be a point on

the boundary of the upper surface of the shoehorn in Figure 2.

Then the corresponding point on the curve z = h(x) must be

Q = Q(x, 0, z). Now a careful inspection reveals that

P = P (x, y, z)

= P (x, y, (c2 − y)/c)

= P (x, x2, (c2 − x2)/c)

It follows that

Q = Q(x, 0, (c2 − x2)/c)

In other words

z =
c2 − x2

c

So that

0 ≤ z ≤ c2 − x2

c

(iii) Finally, we use the xz-plane to project onto the x-axis to

determine

−c ≤ x ≤ c
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It follows that

V =

ˆ c

−c

ˆ (c2−x2)/c

0

ˆ c2−cz

x2
dy dz dx

=

ˆ c

−c

ˆ (c2−x2)/c

0

(c2 − x2 − cz) dz dx

=

ˆ c

−c

[

(

c2 − x2
)

z − cz2

2

] (c2−x2)/c

0

dx

=
1

2c

ˆ c

−c

(

c2 − x2
)2

dx

=
1

c

ˆ c

0

(

x4 − 2c2x2 + c4
)

dx

which is (1). Thus

V =
125

6
as we saw above.
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(b) Next we try dy dx dz.

(i) Same as above:

x2 ≤ y ≤ c2 − cz

(ii) Now we use the xz-plane view to determine the limits with

respect to the x-axis.

Notice that the entry point is through the curve x = −
√
c2 − cz

and similarly the exit point is through the curve x =
√
c2 − cz

hence

−
√

c2 − cz ≤ x ≤
√

c2 − cz

(iii) Finally, we use xz-plane to project onto the z-axis to determine

0 ≤ z ≤ c
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Now let u(z) =
√
c2 − cz. Then

V =

ˆ c

0

ˆ u(z)

−u(z)

ˆ u(z)2

x2
dy dx dz

=

ˆ c

0

ˆ u(z)

−u(z)

(

u(z)2 − x2
)

dx dz

=

ˆ c

0

(

u(z)2x− x3

3

) u(z)

−u(z)

dz

=
4

3

ˆ c

0

u(z)3 dz

=
4

3

ˆ c

0

(

c2 − cz
)3/2

dz

=
−8

15c

(

c2 − cz
)5/2

c

0

= ...

=
125

6

as we saw above.
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(c) Notice that it is easier to reverse the order of the inner two or outer

two limits of integration. Continuing along these lines we try

dx dy dz.

(i) Returning to the original sketch, we see that x = k(y) since the

entry and exit surfaces are parallel to the z-axis. In fact,

−√
y ≤ x ≤ √

y

(ii) From the yz-plane we see that

0 ≤ y ≤ c2 − cz

(iii) Finally,

0 ≤ z ≤ c

Thus

V =

ˆ c

0

ˆ c2−cz

0

ˆ

√
y

−√
y

dx dy dz

Can you evaluate this iterated integral.

(d) As an exercise set up the corresponding iterated integrals for the

differentials dx dz dy and dz dx dy.


