15.8

15.8 Triple Integrals in Cylindrical Coordinates

Integration in Cylindrical Coordinates

Definition. Cylindrical coordinates represent a point P in space
by the ordered triple (7,0, z) where

1. r and 0 are the polar coordinates for the vertical projection of P
onto the zy-plane.

2. z is the rectangular vertical coordinate of P.

The following equations relate rectangular coordinates (z, y, z) to
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cylindrical coordinates (r, 6, z).
x=rcost, y=rsinf, z==z

(Also, r?=24+9* and tanf = y/x)

Remark. One must exercise care when using the second set of
equations.
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Example 1. Constant-Coordinate Equations

Describe the objects generated by the constant equations:

r=T
0 =0y

Z = 20
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X

Suppose that f(r,0, z) is defined on a closed bounded region D in
space. Can we define the integral of f over D? Proceeding in the usual
way (that is, partitioning the region D, etc.), we obtain the following
(Riemann) sum

Sy => [ 1k, Ok, 2) AV

k=1

where AV = ANz r Ary A0y
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Now we take the limit of the above expression as || P|| — 0, where || P||
is the norm of the partition P. If the limit exists we say that f is
integrable over D and write

lim Sn:// Fdv
n—oo D
_// £(r.0,2)dzrdr df
D

It turns out that if f is continuous over the closed bounded region D
then f is integrable (as long as D is “reasonable”). (See also the
remarks following Example 2 below.)
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Finding the limits of integration in cylindrical
coordinates.

e\

If f(r,0,z) is continuous over a region D € R? then

// de:// f(r,0,z)dzrdrdf
D
r=ho(0) prz= 927“9
:/ / / f(r,0,z)dzrdrdd
0 r z=g1(r,0)

v
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Example 2. Integrating in Cylindrical Coordinates
Let D be the solid right cylinder whose base is the region inside the

circle (in the xy-plane) r = cos# and whose top lies in the plane
z = 3 — 2y (see sketch).

z2=3—2y

2y r = cos0

a. Set up the triple integral in cylindrical coordinates that gives the

volume of D.
/2 pcosf 32y
/// dV = / / / rdzdrdf
D —7/2J0 0

Of course, 3 — 2y = 3 — 2r sin 4.
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b. Find the volume of D by evaluating the iterated integral from part

(a).
w/2 pcosf 32y
/// dV—/ / / rdzdrdf
D —7/2J0 0
w/2 prcosf
= / / r(3 —2y)drdf
—7/2J0
/2 pcosf
= / / (37“ — 2r%sin 8) dr df
0
B /W/2 3r? B 2r3 sinf\ |’
S\ 2 3

db
1 71‘/2
= / (9 cos’ 0 — 4 cos® 0 sin 9) do

0

6 —m/2
9 77/2 4 7T/2

= — / cos>0dl — = / cos®> 0 sin 0 df
6 —m/2 6 —7/2

/2 9 0
:—/ (1 + cos20) d9+—/ u? du
4 —7/2 3 Jo

The second integral above is obviously 0. Thus

3 /2
///dV:—/ (14 cos26) df + 0
D 4 —7/2
3 sin 20
-3 ()

/2 37

—m/2 4
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Remark. It is easy to check that

m pcosf  p3—2y
// / rdzd”r’d9:3—7r
0 0 0 4

However, one must proceed with caution as the following example
illustrates. We leave the evaluation of the following integral as an
exercise.

(1) // — tan Yy/x)dyds =0

What happens when we convert (1) to the equivalent integral in polar

coordinates.
cos 0
// tan Yy /) dydx—// Ordrdd

1
(2) = 5/ 6 cos® 0 df
We now have two obvious choices for o and £.

If we let « = —7/2 and g = 7 /2, then the integral in (2) evaluates to O
since integrand 4 cos? # is odd.

On the other hand, it is easy to see that
1/ 0 cos’0dh > 0
2 0

since fcos*d > 0for0 < @ < w/2 and /2 < § < w. This in contrary to
the result above. It is beyond the scope of the course to go into too
much detail about this issue. So we conclude with a simple warning to
use caution when evaluating similar integrals.



15.8 10

Example 3. Explain why the limits of integration of the outside
integral in the previous example must be 6§ = 0 to § = w. Or more
precisely, why they should be § = —7/2t0 0 = 7 /2.

To see this we sketch the polar equation r = cos 6 by “plotting points”.
It's a bit easier to also sketch the graph of » = cos 6 in the rf-coordinate
system instead of setting up a table of inputs, ¢, and outputs, r = f(6).

Firsttry 0 <6 < g
r y
1\ 1
A R R D T 1.
-1 —1+

The dashed red curve in the sketch above is for the polar equation
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r=|cosf|, /2 < 6 < m. Of course, we already knew that the graph of
the given polar equation was a circle of radius 1/2 centered at (1/2,0)
since r = cos ® = r? = r cos . Converting to rectangular coordinates
we obtain

Ayt =2r = (z-1/2+y*=1/4

However, we were unsure which values of 8 were necessary to
generate a complete circle. It follows just as easily that we could also
“parameterize” the circle using —7/2 < 0 < /2.
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Example 4. Find the volume of the solid that lies between the
paraboloid » = 22 + 3? and the plane z = 4.

It follows that the volume is given by

2r p2 P4
V = / / / dz rdr df
0 JO Jaz2442
2 pd
= 27 / / dz rdr
0 x2+y2
2

:27T/ (4 —2° — y*) rdr
0

2
= 27T/ (4 — r¥)rdr
0

=3

Notice also that this solid can be recognized as a solid of revolution. In
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other words, we can use techniques from Calculus Il to compute the
volume.

Now the cross sections perpendicular to the z-axis are disks of radius
V/z. It follows that the cross-sectional area is given by the formula
A(z) = 7 (y/z)” = 7z and hence the volume of revolution is

as we saw above.
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Example 5. Ice-Cream Cone

Let D be the region (an ice-cream cone) bounded below by the cone
z = /2?2 + y* and above by the paraboloid z = 2 — 2% — 1.

Set up the triple integral using cylindrical coordinates that give the
volume using each of the following orders of integration.
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Notice that the surfaces intersect at z = 1 and that the projection onto
the xy-plane is the unit disk.

15
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V:/// rdzdrdd

/9 271'/‘7”1/22
0 r=0 =

/9 2
6=0 r=0

I
Q\
I >
) I
)
3

(-5
_ [T (g) i

rdzdr df

2—r —7“) dr df

)

r=1

do
r=0

16
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Example 6. Switching the Order of Integration (Again)

Redo the last example by changing the order of integration.

a. Firsttry dr dz df

Figure 1: Cutaway View

Notice that if we first integrate with respect to r, we see that
0<r<zfor0<z<land0<r<+2-—zifl1 <z <2(see figure

1),
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b. df dz dr

V= /// rdrdzde
D
:/// rdrdzd8+/// rdrdz df
Cone Cream

=21 pz=1 pr==z
= / / rdrdzdd
0=0 z=0 Jr=0
0=21 prz=2 pr=v2—z
/ / / rdrdzdf
6=0 z=1 Jr=0
z= r=z 2=2 pr=y2—z
:27T/ / Tdrdz+277/ / rdrdz
z=0 Jr=0 z=1 Jr=0
1.2 2
2 _
:27T/ Z—dz+27r/ Zdz
0o 2 2

+
1

) 23 1 Az 22 2
= Tr _—
6 0 4 1
5 1+1
f— T — —_
6 4

18
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Example 7. Let ¢ > 0 and let D be the solid cut by the cylinder

r = acos # and bounded above and below by a sphere of radius a
centered at the origin. Express the volume of D as a triple integral in
cylindrical coordinates and evaluate.

We have

/2 pacos® pvaZ—r?
V / / rdzdrdf
—7/2J0 —Va2—r2
/2  pacosf pvVaZ-r?
2 / / / rdz dr df
—m/2J0 0

/2  pracost
2/ rv a? — r2drdf

—m/2J0

/2 pa?
/ Vududd, (w = a* — r*, etc.)

—7/2 Ja?sin2 6

_ 2 / ST
3 —m/2

2a% [7/?
; 3 —7/2

9 3 4 3 /2
= 7;@ — ?C)L/ sin® @ d6
0

a

do

a2sin? 6

(1—|sin6]’) df




