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16.0 Curl and Divergence

Definition. Circulation Density at a Point in the Plane

The circulation density of a vector field F(x, y) = M i +N j at a point

(x, y) is

(1) (curlF) · k =
∂N

∂x
− ∂M

∂y

It turns out that this notion can be generalized in 3-space. We have the

following

Definition. Curl (Circulation Density)

If F = M i +N j + P k is a vector field in R
3 and if the partial derivatives

of M , N , and P exist, then the curl of F is the vector field

curlF = ∇× F
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=
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∂P

∂y
− ∂N

∂z

)

i−
(

∂P

∂x
− ∂M

∂z

)

j +

(

∂N

∂x
− ∂M

∂y

)

k

Notice that curl in space is a vector.
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There is a related quantity.

Definition. Divergence (Flux Density)

If F = M i +N j + P k is a vector field in R
3 and if the partial derivatives

of M , N , and P exist, then the divergence of F is the scalar

divF = ∇ · F

=
∂M

∂x
+

∂N

∂y
+

∂P

∂z

Notice that, unlike curl, the divergence of a vector field is real-valued.

We describe a physical interpretation of divergence in the next

example.
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Example 1. Find the divergence and curl of the vector field

F = x2y i + 2xy j + z3 k.

divF = ∇ · F =
∂
(

x2y
)

∂x
+

∂ (2xy)

∂y
+

∂
(

z3
)

∂z

= 2xy + 2x + 3z2

Now suppose that F is a velocity field of a fluid flow. Then, for example,

divF(1, 2, 1) = 2(1)(2) + 2(1) + 3(1)2 = 9

implies that fluid is being piped away from the point (1, 2, 1) since the

result is positive. To compute the curl we have

∇× F =
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= i

(

∂
(

z3
)

∂y
− ∂ (2xy)

∂z

)

− j

(

∂
(

z3
)

∂x
− ∂

(

x2y
)

∂z

)

+ k

(

∂ (2xy)

∂x
− ∂

(

x2y
)

∂y

)

= i (0− 0)− j (0− 0) + k
(

2y − x2
)

= (2y − x2)k

Is F a conservative vector field?
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An Important Identity

div curlF = 0

or

∇ · (∇× F) = 0

For a proof, see the text.
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Finding Potential Functions

Recall that if F = M i +N j + P k is conservative, then there is a

function f (called the potential function) such that ∇f = F? To find f

we work with the following partial differential equations (PDEs).

(2)
∂f

∂x
= M,

∂f

∂y
= N,

∂f

∂z
= P

We illustrate below.

Example 2. Show that the vector field below is conservative and find

its potential function.

F = (sin y + zexz) i + x cos y j + xexz k

We first compute the curl.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
sin y + zexz x cos y xexz

∣
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∣

∣

∣

∣

∣

= i

(

∂ (xexz)

∂y
− ∂ (x cos y)

∂z

)

− j

(

∂ (xexz)

∂x
− ∂ (sin y + zexz)

∂z

)

+ k

(

∂ (x cos y)

∂x
− ∂ (sin y + zexz)

∂y

)

= i (0− 0)− j (exz + xz exz − exz − xz exz) + k (cos y − cos y)

= 0

as expected.
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To find the potential function, we first can integrate both sides of

∂f

∂x
= sin y + zexz

to obtain

f = x sin y + exz + g(y, z)

Now comparing the j component of F with
∂f

∂y
yields

x cos y = x cos y +
∂g

∂y

It follows that g does not depend on y. In other words

f = x sin y + exz + h(z)

Finally, we compare the k component of F with
∂f

∂z
to obtain

xexz = xexz + h′(z)

It follows that h′(z) = 0 and hence

f (x, y, z) = x sin y + exz + C

where C is an arbitrary constant.
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Line Integrals

Recall the two types of line integrals that we encountered in section

16.2.

Let r(t) be a smooth parametrization of a curve C for a ≤ t ≤ b that lies

in the domain of a real-valued function f .

Then the line integral of f over C is defined by

(3)

ˆ

C

f (x, y, z) ds =

ˆ b

a

f (x(t), y(t), z(t)) |r′(t)| dt

Suppose instead that we have a continuous vector field F defined on a

smooth curve C which is parameterized by the vector function

r(t), a ≤ t ≤ b. Then the line integral of F along C is

(4)

ˆ

C

F ·T ds =

ˆ b

a

F(r(t)) · r′(t) dt =
ˆ t=b

t=a

F · dr
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We must point out the various equivalent ways that (4) can be written.
ˆ

C

F ·T ds =

ˆ t=b

t=a

F ·T ds

=

ˆ t=b

t=a

F · dr

=

ˆ b

a

F · dr
dt

dt

=

ˆ b

a

(

M
dx

dt
+N

dy

dt
+ P

dz

dt

)

dt

=

ˆ b

a

M dx +N dy + P dz
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Example 3. Evaluate the integrals below. In each case, specify

whether the integral is more like (3) or (4).

a.

ˆ

C

xy dx + z dy + (x + z)dz

Here C can be parametrized by r(t) =
〈

t2, t, t3
〉

, 0 ≤ t ≤ 1.

This is more like (4). We have

xy dx = t2 · t · 2t dt = 2t4 dt

z dy = t3 dt

(x + z) dz = (t2 + t3) · 3t2 dt = 3t4 dt + 3t5 dt

It follows that
ˆ

C

xy dx + z dy + (x + z)dz =

ˆ

1

0

t3 + 5t4 + 3t5 dt

=

(

t4

4
+ t5 +

t6

2

)

1

0

= 7/4
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b. I =

ˆ

C

(sin y + zexz) dx + x cos y dy + xexz dz

Here C is any smooth curve from A(2, π/2, 0) to B(3, 3π/2, 1)

Notice that if we set

f (x, y, z) = x sin y + exz

then

df = (sin y + zexz) dx + x cos y dy + xexz dz (see Ex. 2)

It follows that the integral is path independent. Hence

I =

ˆ B

A

df

= f (B)− f (A)

=

(

3 sin
3π

2
+ e3

)

−
(

2 sin
π

2
+ 1
)

= e3 − 6

Notice that this integral is more like (4).
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c.

ˆ

C

(xy + 1) ds

Here C is the lower semicircle y = −
√
9− x2, traversed in the

positive direction.

This integral is like (3). Notice that C be parametrized by the vector

equation

r(t) = t i−
√

9− t2 j, −3 ≤ t ≤ 3

Then

r′(t) = i− t√
9− t2

k

and

|r′(t)| = 3√
9− t2

So by (3)
ˆ

C

(xy + 1) ds =

ˆ

3

−3

(1− t
√

9− t2)
3√

9− t2
dt

= −3

ˆ

3

−3

t dt +

ˆ

3

−3

3√
9− t2

dt

= 0 + 3 sin−1
t

3

3

−3

= 3π
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d. Let F = (x− z) i + xk be a velocity field flowing through a region in

space and let C be the smooth curve defined by the vector equation

r(t) = cos t i + sin t k, 0 ≤ t ≤ 2π/3. Find the flow along C in the

direction of increasing t.

This is like (4). Now

F(r(t)) = (cos t− sin t) i + cos t k

dr

dt
= − sin t i + cos t k

Hence

F · dr = (1− sin t cos t) dt

So that

Flow =

ˆ

C

F · dr

=

ˆ

2π/3

0

(1− sin t cos t) dt

=

(

t− sin2 t

2

)

2π/3

0

=
2π

3
− 3

8


