16.0 1

16.0 Curl and Divergence

Definition. Circulation Density at a Point in the Plane

The circulation density of a vector field F(z,y) = M i+ N j at a point
(z,y) is
_ON oM

(1) (curlF) - k or oy

It turns out that this notion can be generalized in 3-space. We have the
following

Definition. Curl (Circulation Density)

If F = Mi+ Nj+ Pkis a vector field in R® and if the partial derivatives
of M, N, and P exist, then the curl of F is the vector field

curlF =V x F
i j k
o 0 0

Oxr Oy 0z
M N P

(9P ON L or oM - ON oM K
- \Jdy 0z or 0z )? Ox oy

Notice that curl in space is a vector.
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There is a related quantity.

Definition. Divergence (Flux Density)

If F = Mi+ Nj+ Pkis a vector field in R® and if the partial derivatives
of M, N, and P exist, then the divergence of F is the scalar

dvF =V .F

_0M+(9N+8P
 Jdr Oy 0z

Notice that, unlike curl, the divergence of a vector field is real-valued.
We describe a physical interpretation of divergence in the next
example.
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Example 1. Find the divergence and curl of the vector field
F = 2%yi+2zyj+ 2° k.

0(z%) 0(2zy) 0(2)
ox i oy i 0z

= 2xy + 2z + 327

dvF =V .F =

Now suppose that F is a velocity field of a fluid flow. Then, for example,
divF(1, 2, 1) = 2(1)(2) +2(1) + 3(1)* =9
implies that fluid is being piped away from the point (1,2, 1) since the
result is positive. To compute the curl we have
i j k
o o0 0
Oor 0Oy 0z

3

V xF =

v’y 2xy %

_ (353) - 3(§Zsy)> _ (5{223) - 3(;6221/))

k <3<2xy) 0 (ﬂ?Qy))

ox Jy

=i(0-0)—j(0—-0)+ k(2y — 27)
:(2y—3:2)k

Is F a conservative vector field?
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An Important Identity
diveurl F =0

or

V- (VxF)=0

For a proof, see the text.
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Finding Potential Functions

Recall thatif F = M i+ N j+ Pk is conservative, then there is a
function f (called the potential function) such that Vf = F? To find f
we work with the following partial differential equations (PDESs).

OF _yp 97—y 9F_

(2) 8:U_M’ 8y_N’ 0z

P

We illustrate below.

Example 2. Show that the vector field below is conservative and find
its potential function.

F = (siny + ze™) i+ xcosy j+ ze™ k

We first compute the curl.

i ] k
0 0 0
V X F = — — =
8 Ox oy 0z
siny + ze** xcosy xe'”

_ (6(a:ex2) a(xCOSy)) iy <@(xem) 6(siny+ze~w))

oy 0z Ox 0z
O(xcosy) O(siny+ ze™)
k _
" ( Ox Oy

=i(0—-0)—je*+zze”™ —e” —x2e") + k(cosy — cosy)
=0

as expected.
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To find the potential function, we first can integrate both sides of

8—f = siny + ze**
or 4
to obtain
f=uzsiny + e~ + gy, 2)
. . L Of
Now comparing the j component of F with 50 yields
Y
dg
T COSY = T COSY + —
Ay

It follows that ¢ does not depend on y. In other words
[ =xsiny + e + h(z)
of

Finally, we compare the k component of F with 32 to obtain
<

re™ = xe” + h'(2)
It follows that 2/(z) = 0 and hence
flx,y,z) =xsiny + e+ C

where C'is an arbitrary constant.
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Line Integrals
Recall the two types of line integrals that we encountered in section
16.2.

Let r(¢) be a smooth parametrization of a curve C for a <t < b that lies
in the domain of a real-valued function f.

Then the line integral of f over C is defined by

b
3) /O f(o,y,2)ds = / F ((t), y(t), (1)) ()] d

Suppose instead that we have a continuous vector field F defined on a
smooth curve C which is parameterized by the vector function
r(t), a <t <b. Thenthe line integral of F along C'is

(4) /CF-TdszfabF(r(t))-r’(t)dt:/ttbF.dr

=a
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We must point out the various equivalent ways that (4) can be written.

t=b
/F-TdS:/ F-Tds
C t=a
t=b
:/ F - dr
t=a
b
dr
= F.-—dt
[P

b
dx dy dz
= M—+N-=4+P— | dt
/a( a  Va " dt)

b
:/ Mdx+ Ndy+ Pdz
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Example 3. Evaluate the integrals below. In each case, specify
whether the integral is more like (3) or (4).

a. / zydr + zdy + (v + 2)dz
H(;re C' can be parametrized by r(t) = (¢%,t,t*), 0 <t < 1.
This is more like (4). We have
cyde =t*-t-2tdt = 2t* dt
zdy =t dt
(x4 2)dz = (t* + ) - 3t dt = 3t* dt + 3t° dt

It follows that

1
/azyda:+zdy—|—(x+z)dz—/ t3 4 5t* 4 3t° dt
C 0

t4 . t6
= | — t —
(7+¢+3)

—7/4

1

0
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b. [ = / (siny + ze**) dx + x cosy dy + xe™ dz
Here % is any smooth curve from A(2,7/2,0) to B(3,37/2,1)
Notice that if we set
flz,y,z) = xsiny + e**
then
df = (siny + ze™) do + xcosydy + ve” dz (see Ex. )

It follows that the integral is path independent. Hence

I:/ABdf

= f(B) = f(A)

3
= (3811(1;—1—63) — (251n%+1)
— 3 — 6

Notice that this integral is more like (4).

10
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C. /C(a:er 1)ds

Here C' is the lower semicircle y = —/9 — 22, traversed in the

positive direction.

11

This integral is like (3). Notice that C' be parametrized by the vector

equation

r(t)=ti— 9 —12j, —-3<t<3
Then

t

/ —

r(t)—l—mk
and

3

/

t:

(0] =~
So by (3)

3 : 3
/C(a:y—i—l)dS—/g(l—t 9 —t?2) %

3
3 [ tar+
-3

t

=0+ 3sin"' =
S1I 3

-3

= 37

33

/ it
_3/9— 2

3
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d. Let F = (x — 2)i+ x k be a velocity field flowing through a region in
space and let C' be the smooth curve defined by the vector equation
r(t) =costi+sint k, 0 <t < 27/3. Find the flow along C'in the
direction of increasing t.

This is like (4). Now

F(r(t)) = (cost —sint)i+ cost k

o nti+costk
dt_ Sint 1 COS
Hence
F.dr = (1—sint cost)dt
So that

FlOW:/F-dr
C

27/3
:/ (1 —sintcost)dt
0

( sin? t)
— t —
2

2 3

3 8

27/3

0



