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16.4 Green’s Theorem

Circulation Density

(x, y) (x +∆x, y)

(x + ∆x, y +∆y)(x, y +∆y)

C1

C2

C3

C4 Rk

Suppose that

F(x, y) = M(x, y) i +N(x, y) j

is the velocity field of a fluid flow in the plane and that the first partials

of M and N are continuous over a region R. Now let Rk be a small

rectangle in R (as shown above).
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Suppose that we wish to approximate the circulation around the small

rectangle Rk. If ∆x and ∆y are small, we expect the velocity field to be

nearly constant on each of the four sides of A. For example, the flow

along C1 is approximately

F(x, y) · i∆x = M(x, y)∆x.

Similarly, the flow along each of the other three sides is

C2 : F(x +∆x, y) · j∆y = N(x +∆x, y)∆y

C3 : F(x, y +∆y) · (− i)∆x = −M(x, y + ∆y)∆x

C4 : F(x, y) · (− j)∆y = −N(x, y)∆y

Now putting the top and bottom sides together we have

M(x, y)∆x−M(x, y + ∆y)∆x =

(
M(x, y)−M(x, y +∆y)

∆y

)

∆x∆y

≈ −∂M

∂y
∆x∆y

For the left and right sides we have

N(x +∆x, y)∆y −N(x, y)∆y =

(
N(x +∆x, y)−N(x, y)

∆x

)

∆x∆y

≈ ∂N

∂x
∆x∆y

It follows that the circulation around the rectangle is approximately

(1) circulation =

(
∂N

∂x
− ∂M

∂y

)

∆x∆y
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Dividing both sides of (1) by the area of Rk suggests the following

definition.

Definition. Circulation Density at a Point in the Plane

The circulation density or k-component of the curl of a vector field

F(x, y) = M i +N j at a point (x, y) is

(2) (curlF) · k =
∂N

∂x
− ∂M

∂y

Remark. Recall that the curl of the vector field F is given by

curlF = ∇× F

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

M N P

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(
∂P

∂y
− ∂N

∂z

)

i−
(
∂P

∂x
− ∂M

∂z

)

j +

(
∂N

∂x
− ∂M

∂y

)

k

Notice that circulation density in the plane is a scalar.
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Theorem 1. Green’s Theorem (Tangential Form)

Let C be a piecewise-smooth, simple closed curve in the plane and let

R be the region bounded by C (in the plane). Suppose also that M and

N have continuous partial derivatives on an open region that contains

R.

Then the counterclockwise circulation of the field F = M i +N j around

C is equal to the double integral of the circulation density

(k-component of the curl) over the region R.
ˆ

C

F ·T ds =

ffi

C

M dx +N dy(3)

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

︸ ︷︷ ︸

circulation density

dx dy(4)

or, more conveniently,

=

¨

R

(∇× F) · k
︸ ︷︷ ︸

circulation density

dx dy
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Proof. We shall prove a special case of the theorem. Suppose that C

is the boundary of the triangular region shown in the sketch.

a b

c

d

C1

C2

C3

R

Let

y = g(x) =
d− c

b− a
(x− a) + c and

x = g−1(y) =
b− a

d− c
(y − c) + c.

Notice that these are equations for C3

and will be used below.



16.4 6

1. We start with the curl integral (RHS of (4)).

¨

R

∂N

∂x
dx dy −

¨

R

∂M

∂y
dy dx

=

ˆ d

c

ˆ x=b

x=g−1(y)

∂N

∂x
dx dy −

ˆ b

a

ˆ y=g(x)

y=c

∂M

∂y
dy dx

=

ˆ d

c

(
N(b, y)−N

(
g−1(y), y

))
dy

−
ˆ b

a

(M (x, g(x))−M(x, c)) dx

or

=

ˆ d

c

(
N(b, y)−N

(
g−1(y), y

))
dy(5)

+

ˆ b

a

(M(x, c)−M (x, g(x))) dx
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2. Now we consider the circulation integral (RHS of (3)).

It is easy to see that the circulation integral can be rewritten as
ffi

C

M dx +N dy =

ˆ

C1

M dx +

ˆ

C2

N dy +

ˆ

C3

M dx +

ˆ

C3

N dy

Now
ˆ

C1

M dx =

ˆ b

a

M(x, c) dx

ˆ

C2

N dy =

ˆ d

c

N(b, y) dy

ˆ

C3

M dx =

ˆ a

b

M (x, g(x)) dx = −
ˆ b

a

M (x, g(x)) dx

ˆ

C3

N dy =

ˆ c

d

N
(
g−1(y), y

)
dy = −

ˆ d

c

N
(
g−1(y), y

)
dy

Putting these together we have
ffi

C

M dx +N dy =

ˆ b

a

(M(x, c)−M (x, g(x))) dx

+

ˆ d

c

(
N(b, y)−N

(
g−1(y), y

))
dy

which is the RHS of (5).
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Remark. Now to prove the theorem for arbitrary triangles, we first

consider the following.

From this we could prove the theorem for arbitrary polygonal regions,

etc.
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Example 1. Consider the velocity vector field below.

F = 3x j

over the unit square R as shown in Figure 1. We imagine the field

represents a thin fluid flowing over the xy-plane and the units of F are

expressed in ft/sec.

R
C1

C2

C3

C4

Figure 1: Velocity Field 3x j

What can you say about the circulation density (see Figure 1) at each

point within the region R?

Now find the counterclockwise circulation for the velocity field F on ∂R,

the boundary of R, in two different ways.

We first proceed directly, that is, we evaluate the line integral
´

∂RF · dr.
ˆ

∂R

F · dr =
ˆ

C1

+

ˆ

C2

+

ˆ

C3

+

ˆ

C4

F · dr

Notice that the flow along each of the line segments C2, C3, C4 is zero.
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Now let

C1 : r1(t) = i + t j, 0 ≤ t ≤ 1

Then
ˆ

∂R

F · dr =
ˆ

C1

F(r1(t)) · dr1

=

ˆ 1

0

3× 1 dt = 3

Now find the circulation using Green’s Theorem. We have
ˆ

∂R

F · dr =
¨

R

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

¨

R

(
∂(3x)

∂x
− ∂(0)

∂y

)

dx dy

= 3

¨

R

dx dy

= 3× area of R

= 3

as we saw above.
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Example 2.

Let f (x, y) = x2 + xy. Verify Green’s Theorem for the gradient field

∇f = (2x + y) i + x j over the region R bounded by the circle

C : r(t) = 2 cos t i + 2 sin t j, 0 ≤ t ≤ 2π

−2 −1 1 2

−2

−1

1

2

So by Green’s Theorem
ffi

C

(2x + y) dx + x dy =

ffi

C

M dx +N dy

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

¨

R

(1− 1) dx dy

= 0

As expected since gradient vector fields are conservative.
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Example 3.

Use Green’s Theorem to find the counterclockwise circulation for

F = (x + ex sin y) i + (x + ex cos y) j

over the righthand loop of the lemniscate

C : r2 = cos 2θ.
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M = x + ex sin y, N = x + ex cos y

∂N

∂x
= 1 + ex cos y,

∂M

∂y
= ex cos y

It follows that the circulation density is

(∇× F) · k =
∂N

∂x
− ∂M

∂y

= 1 + ex cos y − ex cos y

= 1

So by Green’s Theorem
ffi

C

M dx +N dy =

¨

R

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

¨

R

1 dx dy (area of the lemniscate)

= . . .

=
1

2



16.4 14

Example 4.

Evaluate the circulation integral

ffi

C

(3y dx + 2x dy) where C is boundary

of the region

0 ≤ x ≤ π, 0 ≤ y ≤ sin x

So let F = 3y i + 2x j. See Figure 2.

1 2 3

1

Figure 2: Vector Field 3y i+ 2x j
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Now apply Green’s Theorem.
ffi

C

3y dx + 2x dy =

ffi

C

M dx +N dy

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

ˆ π

0

ˆ sinx

0

(2− 3) dy dx

= −
ˆ π

0

sin x dx

= cosx
π

0

= −2

as we saw in section 16.3.
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Example 5. Applying Green’s Theorem - Special Results

a. Let F = y i. Let C be the boundary of the region R in the sketch

below. Apply Green’s Theorem to quickly find the circulation of F

around C.

a b

C1
C2

C3

C4

y = g(x)

R
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ˆ

C

F ·T ds =

ffi

C

M dx +N dy

=

ffi

C

y dx

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

ˆ b

a

ˆ g(x)

0

(0− 1) dy dx

= −
ˆ b

a

g(x) dx

You can verify this result by actually computing the line integral

using the parameterizations given below for C1 –C4.

Notice that C = C1 ∪ C2 ∪ C3 ∪ C4 where

C1 : r1(t) = b i + g(b)t j

C2 : r2(t) = (b− (b− a) t) i + g(b− (b− a) t) j

C3 : r3(t) = a i + (1− t)g(a) j

C4 : r4(t) = (a + (b− a)t) i,

Here each parametrization is given for 0 ≤ t ≤ 1. We leave the

remaining calculations as an exercise.
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1

a b

C1

C2

C3

C4

R

Figure 3: F = G(x) j

b. Let F = G(x) j where G is a differentiable function of x. Let C be the

boundary of a rectangle R shown in the sketch below. Apply Green’s

Theorem to obtain a well known result from an introductory calculus

course.

The vector field is constant along vertical lines. In other words, if

c ∈ R,

F(c, y) = G(c) j, for all y ∈ R

First we compute the circulation of F = G(x) j around the closed

curve C directly.

Notice that F ·T = 0 for the line segments C2 and C4. Also,

∆yC1
= ∆yC3

= 1. It follows that

circulation = (F(b, y) · j) ∆y + (F(a, y) · (− j)) ∆y

= G(b)∆y −G(a)∆y

= G(b)−G(a)
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Now,
∂N

∂x
=

∂G(x)

∂x
= G′(x) = g(x) and

∂M

∂y
=

∂(0)

∂y
= 0.

So by Green’s Theorem

G(b)−G(a) =

ˆ

C

F ·T ds

=

ffi

C

M dx +N dy

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

ˆ b

a

ˆ 1

0

(G′(x)− 0) dy dx

=

ˆ b

a

G′(x) dx

=

ˆ b

a

g(x) dx

So the Fundamental Theorem of Calculus is a special case of (the

tangential form) Green’s Theorem.

In this case the definite integral
´ b

a g(x) dx can be viewed as the

circulation of F = G(x) j around the closed curve C (see Fig. 3)

where G(x) is any antiderivative of g(x).
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Applications

Green’s Theorem can be used to derive several useful formulas for

area.

Let C be a simple closed curve in the plane enclosing a region R. Then

Area of R =

¨

R

dx dy

=
1

2

¨

R

(1− (−1)) dx dy

=
1

2

¨

R

(
∂(x)

∂x
− ∂(−y)

∂y

)

dx dy

=
1

2

ffi

C

−y dx + x dy(6)

The above formula can be used to explain how a planimeter works

(see the brief discussion and references on page 1111 of the text).
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(xj, yj)

(xj+1, yj+1)

Cj+1

b

b

Figure 4: General Polygonal Region

Example 6. Let R be a polygon with vertices

(x0, y0), (x1, y1), . . . (xn, yn). A typical edge is shown in Figure 4. Use (6)

to derive the formula

(7) Area of R =
1

2

n−1∑

j=0

xjyj+1 − xj+1yj

So by (6), the area of the polygon is given by

Area =
1

2

ffi

C

x dy − y dx

=
1

2

ffi

∪n
j=1

Cj

x dy − y dx

=
1

2

ˆ

C1

x dy − y dx +
1

2

ˆ

C1

x dy − y dx +

· · · + 1

2

ˆ

Cn

x dy − y dx

We compute the flow integral along an arbitrary side. So let

Cj+1 : r(t) = (xj(1− t) + xj+1t) i + (yj(1− t) + yj+1t) j, 0 ≤ t ≤ 1
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Then

x = xj(1− t) + xj+1t, dy = (yj+1 − yj) dt

y = yj(1− t) + yj+1t, dx = (xj+1 − xj) dt

It follows that

1

2

ffi

Cj+1

x dy − y dx =
1

2

ˆ 1

0

[(xj(1− t) + xj+1t) (yj+1 − yj)− (yj(1− t) + yj+1t) (

=
1

2

ˆ 1

0

(xjyj+1 − xj+1yj) dt

=
1

2
xjyj+1 −

1

2
xj+1yj

Thus

Area =
1

2

ˆ

C1

x dy − y dx +
1

2

ˆ

C1

x dy − y dx +

· · · + 1

2

ˆ

Cn

x dy − y dx

=
1

2

n−1∑

j=0

ˆ

Cj+1

x dy − y dx

=
1

2

n−1∑

j=0

xjyj+1 − xj+1yj

as desired.
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As another application of (6), we derive the well-known formula for the

area of an ellipse. Recall that the general equation of an ellipse

centered at the origin is given by

x2

a2
+

y2

b2
= 1

for some a, b > 0. It is easy to see that this ellipse can be

parameterized by

C : r(t) = a cos t i + b sin t j, 0 ≤ t ≤ 2π

Now let R be the region enclosed by the ellipse. Then by (6)

Area of ellipse =
1

2

ffi

C

x dy − y dx

=
1

2

ˆ 2π

0

((a cos t)(b cos t)− (b sin t)(−a sin t)) dt

=
ab

2

ˆ 2π

0

dt = πab

How would you calculate the area using techniques from first semester

calculus?
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Example 7.

Evaluate the integral

ffi

C

4xy dx + x dy. Here C is defined by the vector

equation

(8) C : r(t) = −2 sin t i + 3 cos t j, 0 ≤ t ≤ 2π

Let F = 4xy i + x j. Then the given integral is a circulation integral.

So let R be the interior of the ellipse defined in (8). Then by (the

tangential form of) Green’s Theorem

ffi

C

4xy dx + x dy =

¨

R

(
∂(x)

∂x
− ∂(4xy)

∂y

)

dx dy

=

¨

R

(1− 4x) dx dy

Notice that the ellipse has the rectangular equation

(9)
x2

4
+

y2

9
= 1

Thus

¨

R

(1− 4x) dx dy =

ˆ 2

−2

(1− 4x)

ˆ

√
36−9x2/2

−
√
36−9x2/2

dy dx

=

ˆ 2

−2

(1− 4x)
√

36− 9x2 dx
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We try the trig substitution x = 2 sin θ. Then

ˆ 2

−2

(1− 4x)
√

36− 9x2 dx = 12

ˆ π/2

−π/2

(1− 8 sin θ) cos2 θ dθ

= 6

ˆ π/2

−π/2

(1 + cos 2θ) dθ − 96

ˆ π/2

−π/2

sin θ cos2 θ dθ

= 6

ˆ π/2

−π/2

(1 + cos 2θ) dθ − 0

= ...

= 6π

We leave it as an exercise to evaluate the line integral directly.
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1−1

1

Figure 5: Parametric Curve: r = sin 2t i+ sin t j

Example 8. Find the area of the region R whose boundary is given by

the vector equation r(t) = sin 2t i + sin t j, 0 ≤ t ≤ π.

So by (6), this is

Area =
1

2

ffi

C

−y dx + x dy

=
1

2

ˆ π

0

−2 sin t cos 2t + sin 2t cos t dt

=

ˆ π

0

− sin t(2 cos2 t− 1) + sin t cos2 t dt

=

ˆ −1

1

u2 − 1 du

=
4

3

The solution above is nice and short but it sure seems like overkill

(using Green’s Theorem) for a simple area calculation. Can we use one

of the definitions from sections 15.3 or 15.4 to compute the area of R?
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Example 9. Redo the previous example by rewriting the given vector

equation in polar form.

Let’s rewrite the parametric equations

(10) x = sin 2t = 2 sin t cos t and y = sin t

in polar form and exploit the formula A =

¨

R

r dr dθ. Now

r2 = x2 + y2 = sin2 t(4 cos2 t + 1)

= (1− cos2 t)(4 cos2 t + 1)

and

tan θ =
y

x
=

1

2 cos t
or

cos t =
cot θ

2

Let θ0 = arctan(1/2). It follows that

r(θ) =

√
(

1− cot2 θ

4

)

(1 + cot2 θ),

θ0 ≤ θ ≤ π − θ0

Now

Area =

¨

R

r dr dθ =

ˆ π−θ0

θ0

ˆ r(θ)

0

r dr dθ

= 2

ˆ π/2

θ0

ˆ r(θ)

0

r dr dθ
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Area =

ˆ π/2

θ0

r2(θ) dθ

=

ˆ π/2

θ0

(

1− cot2 θ

4

)

(1 + cot2 θ) dθ

=

ˆ π/2

θ0

1 +
3 cot2 θ

4
− cot4 θ

4
dθ

= ...

=
4

3

As we saw above. Here we have relied on the standard trig reductions

formulas for the cotangent function. For example,
ˆ

cot4 θ dθ =

ˆ

cot2 θ(csc2 θ − 1) dθ

=

ˆ

cot2 θ csc2 θ dθ −
ˆ

cot2 θ dθ

=

ˆ

cot2 θ csc2 θ dθ −
ˆ

(csc2 θ − 1) dθ

=
− cot3 θ

3
+ cot θ + θ + C

That’s a lot of work for a simple area calculation. Perhaps working in

rectangular coordinates would be easier.
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Example 10. Redo Example 8 by working in rectangular coordinates.

This turns out to be easier than working in polar coordinates. Notice

that x = f (y) since by (10) we have

x = 2 sin t cos t = 2 sin t
√

1− sin2 t

= 2y
√

1− y2

Now the rest is easy. We have

Area = 2

ˆ 1

0

ˆ 2y
√

1−y2

0

dx dy

= 2

ˆ 1

0

2y
√

1− y2 dy

= −2

ˆ 0

1

√
u du

=
4

3
u3/2

1

0

=
4

3
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C
a

Figure 6: A Spin Field

Example 11. Let F =
−y

x2 + y2
i +

x

x2 + y2
j and let C be a positively

oriented circle of radius a > 0 centered at the origin. Evaluate the

circulation integral
´

C F · dr.

As usual C can be parameterized by the vector equation

r(t) = a cos t i + a sin t j, 0 ≤ t ≤ 2π. It follows that

dr/dt = 〈−a sin t, a cos t〉 and

F(r(t)) =
− sin t

a
i +

cos t

a
j

so that
ˆ

C

F · dr =
ˆ 2π

0

sin2 t + cos2 t dt

=

ˆ 2π

0

dt = 2π

Compare with Example 7 from 16.2.
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Now let’s try using Green’s Theorem. Let D be the disk of radius a > 0

centered at the origin and let

M =
−y

x2 + y2
and N =

x

x2 + y2

Then according to Green’s Theorem
ˆ

C

F · dr =
¨

D

(
∂N

∂x
− ∂M

∂y

)

dx dy

=

¨

D

(
y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2

)

dx dy

=

¨

D

0 dx dy

= 0 ???

What is going on?

We will have more to say about this example next time.


