16.7

16.7 Surface Integrals

Let f be a function defined on a region of R? that contains the surface
S. In this section we will define the surface integral of f over S.

Definition. Suppose that the surface S has the vector equation
(1) r(u,v) =z(u,v)i+y(u,v)j+ z(u,v)k, (u,v) €D
Now if the components of r, and r, are continuous and r, and r, are

nonzero and nonparallel in the interior of D, then we define the
surface integral of / over the surface S by

@) //S Flr,y,2)dS = //D (e, 0)) 1, x 1] dA

Remark. Compare with the definition of a line integral from section
16.2.

@) /fxy, ds—/f (1) dt

Here r(¢) is a smooth parametrization of the space curve C.
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Example 1. Letb > 0 and let S be the cone with vector equation

r(u,v) =ucosvitusinvj+uk, 0<u<b 0<v<2r

Evaluate the surface integral // z2 dS.
S

Now
r, =cosvi+sinvj+ k, r,=—usinvi+ ucosvj
So that
r, Xr,=—ucosvit+usinvj+uk
and

v, X 1, = V2 cos? v+ u? sin v + u?

since v > (0. Thus

(4) //Sﬁzdszfz// (u? cos® v) u - udA
—f/ u du/%cos vdv

\[b5/ 1+0082vd
0
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Let’s rework the previous example with the parametrization (of .S) given
by the vector equation

r(z,y) =xi+yj+Vz?+y°k, 22+ < b

Then . y
r,=i+——k, r,=j+—k
. /a:2+y2 y /$2+y2
Thus
—x —y
r, XTI, = 1+ jt+ k
Y /:z:2+y2 /a:2+y2
and
r, xr,| = V2
Now

/[§x2zdszﬂ//l)xQJWdA

Switching to polar coordinates we obtain

27 b
:\/5/ / (r2cos29)r'rdrd9
0o Jo
which is (4).
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Orientation

We call a smooth surface S orientable or two-sided if it is possible to
define a field n of unit normal vectors on S that varies continuously with
position.

Smooth surfaces that enclose solids are orientable and by convention,
n is chosen to point outward. At each point on an orientable surface
the vector n indicates the positive direction.

Example 2. Nonorientable Surface

The Mobius Strip is an example if a nonorientable (or one-sided)
surface.
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Now let S be a two-sided surface with vector equation
r(u,v) =z(u,v)i+y(u,v)j+ z(u,v)k, (u,v) €D

Now suppose that S has a tangent plane at every point (except
possibly at a boundary point). Then it is not difficult to show that

r, Xr,

= T, X 1y

and n, = —n; are unit vectors normal to the surface S.

If S encloses a solid region E, it is conventional that the positive
orientation is one for which the unit normal vectors point away from E.
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n AtV h=Atv-n

AS

Figure 1: Fluid flow across surface S.

Surface Integrals for Vector Fields

Let D be a region in space bounded by a closed surface S. Let

v(z,y, z) be the velocity field of a fluid flowing smoothly through D and
6 =4(t, x,y, z) be the density of the fluid at (z, y, z) at time ¢. Consider
the vector field F = §v and suppose all functions in question have
continuous first partial derivatives.

Now consider a small patch AS on the surface S (See Figure 1). If At
is small, then the volume AV of fluid that crosses the patch is
approximately equal to the volume of a the cylinder with base area AS
times the height h = (Atv) - n.

We have
AV =v-nASAt
So the mass of this volume of fluid is

Am ~ov-nASAt=F -nAS At
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|t follows that the rate at which mass is leaving the region D across the
patch AS is roughly

Am

A7 ~F -nAS
Summing over S yields
> Am N
(5) I Z F-nAS

So the right-hand side of this last equation gives an estimate of the
average rate at which mass flows across S.

Notice that the right-hand side of (5) is a Riemann sum. So if S and F
are nice enough, At — 0 and AS — 0 produces

d—m—//F-ndS
dt g

This leads to the following definition.

Definition. The Surface Integral of F over S

If Fis a continuous vector filed defined on an oriented surface S with
unit normal vector n, then the surface integral of F over S is

(6) //SF-dS://SF-ndS

This integral is also called the flux of F across S.
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If S is defined by a vector function r(u, v) over some domain D, then

n —
T, X 1y T, X 1y

Here we choose the quantity that gives us the preferred direction.

It follows that

//SF -dS = //F ndS
ARt
- // [F (r(u, ) - ;Z i iZ\ r, x r,| dA
) // (ry x r,) dA
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Example 3.

Find the flux of the field F = yi + x j across the portion of the sphere
2?4+ y? + 2% = a® in the first octant in the direction away from the origin.

Z

Let g(z,y, 2) = 2> + y*> + 2% Then the given surface, call it S, is just the
level surface g = a®. Observe that S can defined by the vector equation

r(¢,0) =asing cosfi+asing sinfj+acospk, (¢,0) € D

and

s X Iy = a’sin® ¢ cos@i+ a’sin® ¢ sinfj + a’sin ¢ cos g k

Here D = {(¢,0) : 0 < ¢ < 7/2,0 <60 < w/2}. (See examples 4 and 10
from section 16.6 in the text.)
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It follows that,

//SF’dS_//DF(r<uvU))'(I‘u><rU) JA

— // (asin¢ sin@1i+ asin¢ cosdj)-
D

(a2 sin? ¢ cos @1+ a’sin® ¢ sinf j + a’sin ¢ Cosgbk) dA

/2 /2
=a’ / / (sin3 ¢ sin @ cosf + sin® ¢ sin @ cos 9) do df
0 0

/2 /2
= a3/ sin3qbdqb/ 2sinf cos 6 db
0 0

Redo the last example by observing that S can also be defined by the
vector equation

r(z,y) =xi+yj++a® -2 —y’k, (z,y) €D,

where D = {(z,y): 2>+ y* <a* x>0,y >0}
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Example 4.

Find the flux of the field F = z?i + x j — 32 k outward through the
surface cut from the parabolic cylinder z = 4 — y* by the planes

r=0 z=1 andz = 0.
\\\\\\\\\\\\\\\\\\m.
Let S be the given parabolic cylinder and

D={(x,y): 0<z<1,-2<y<2}. Then S can be defined by the
vector equation

r(z,y) =zi+yj+(@d—-y)k (z,y) €D

Proceeding as usual we have
r,=1i and r,=j—2yk
So that
r, xr,=2yj+ k

11
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Following (7) we obtain

//SF'ndS: //DF(I'(%?J)) +(r; X r,) dA

2 1
:/ /(392+2xy—12) d:l?dy
—2J0

= —32

12
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Example 5.

Let S be the portion of the cylinder y = e in the first octant, with
0<x<land0<z<1. And let n be the unit vector normal to S that
points away from the yz-plane. Find the flux of the field

F = —-2i+2yj+ zk across S in the direction of n.

i

Let D ={(z,2):0 <2 <1,0<z<1}. Then S can be defined by the
vector equation

r(r,z)=xit+e'j+zk, (r,2)€D

Proceeding as before we have
r,=i+¢e¢"j and r.=k
So that

r, Xr,=e'i— j
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From (7) we have

/ng'ndSZ//l)F(r(x>Z))'(rx><rz) JA

—//D(—21+26xj+zk)-(e”3i—j) dA

1 pl
:—4//exdxdz
0o Jo
1
:—4/ e’ dx
0

=4(1 —e)

The given surface can also be parameterized by the vector equation

(8) ri(y,z) =lnyi+yj+zk, (y,2)€ D

Exercise - Set up and evaluate an equivalent integral for Example 5
using the vector equation (8). Of course, you will need to find D;.
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Example 6. Let b > 0. Find the outward flux of the field

_rityjt+zk
PE
across the surface of the sphere S: 22 + y> + 22 = p*> = I°.

F : p= /a4y + 22

Notice that the outward normal is
rit+yjt+zk zi+yj+zk
n o fr—
V24 y? + 22 b

and

4y 2]
F-n= S
bt b?

It follows that the flux across the outer surface S is

| |
//F-ndS://ﬁdS:ﬁ//dS
S S S
|

=13 x surface area of S

1
= §47sz =47

So the outward flux across a sphere of any radius for this vector field is
4. We will have more to say about this example in section 16.9.



