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16.7 Surface Integrals

Let f be a function defined on a region of R3 that contains the surface

S. In this section we will define the surface integral of f over S.

Definition. Suppose that the surface S has the vector equation

(1) r(u, v) = x(u, v) i + y(u, v) j + z(u, v)k, (u, v) ∈ D

Now if the components of ru and rv are continuous and ru and rv are

nonzero and nonparallel in the interior of D, then we define the

surface integral of f over the surface S by

(2)

¨

S

f (x, y, z) dS =

¨

D

f (r(u, v)) |ru × rv| dA

Remark. Compare with the definition of a line integral from section

16.2.

(3)

ˆ

C

f (x, y, z) ds =

ˆ b

a

f (r(t)) |r′(t)| dt

Here r(t) is a smooth parametrization of the space curve C.
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Example 1. Let b > 0 and let S be the cone with vector equation

r(u, v) = u cos v i + u sin v j + uk, 0 ≤ u ≤ b, 0 ≤ v ≤ 2π

Evaluate the surface integral

¨

S

x2z dS.

Now

ru = cos v i + sin v j + k, rv = −u sin v i + u cos v j

So that

ru × rv = −u cos v i + u sin v j + uk

and

|ru × rv| =
√

u2 cos2 v + u2 sin2 v + u2

=
√
2u

since u ≥ 0. Thus
¨

S

x2z dS =
√
2

¨

D

(

u2 cos2 v
)

u · u dA(4)

=
√
2

ˆ b

0

u4 du

ˆ

2π

0

cos2 v dv

=

√
2 b5

5

ˆ π

0

1 + cos 2v

2
dv

=
b5

5
√
2

(

v +
sin 2v

2

)

2π

0

=
π
√
2 b5

5
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Let’s rework the previous example with the parametrization (of S) given

by the vector equation

r(x, y) = x i + y j +
√

x2 + y2 k, x2 + y2 ≤ b2

Then

rx = i +
x

√

x2 + y2
k, ry = j +

y
√

x2 + y2
k

Thus

rx × ry =
−x

√

x2 + y2
i +

−y
√

x2 + y2
j + k

and

|rx × ry| =
√
2

Now
¨

S

x2z dS =
√
2

¨

D

x2
√

x2 + y2 dA

Switching to polar coordinates we obtain

=
√
2

ˆ

2π

0

ˆ b

0

(

r2 cos2 θ
)

r · r dr dθ

which is (4).
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Orientation

We call a smooth surface S orientable or two-sided if it is possible to

define a field n of unit normal vectors on S that varies continuously with

position.

Smooth surfaces that enclose solids are orientable and by convention,

n is chosen to point outward. At each point on an orientable surface

the vector n indicates the positive direction.

Example 2. Nonorientable Surface

The Mobius Strip is an example if a nonorientable (or one-sided)

surface.

x
y

z
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Now let S be a two-sided surface with vector equation

r(u, v) = x(u, v) i + y(u, v) j + z(u, v)k, (u, v) ∈ D

Now suppose that S has a tangent plane at every point (except

possibly at a boundary point). Then it is not difficult to show that

n1 =
ru × rv

|ru × rv|
and n2 = −n1 are unit vectors normal to the surface S.

If S encloses a solid region E, it is conventional that the positive

orientation is one for which the unit normal vectors point away from E.



16.7 6

S

∆S

∆tv
h = ∆tv · n

n

Figure 1: Fluid flow across surface S.

Surface Integrals for Vector Fields

Let D be a region in space bounded by a closed surface S. Let

v(x, y, z) be the velocity field of a fluid flowing smoothly through D and

δ = δ(t, x, y, z) be the density of the fluid at (x, y, z) at time t. Consider

the vector field F = δv and suppose all functions in question have

continuous first partial derivatives.

Now consider a small patch ∆S on the surface S (See Figure 1). If ∆t

is small, then the volume ∆V of fluid that crosses the patch is

approximately equal to the volume of a the cylinder with base area ∆S

times the height h = (∆tv) · n.

We have

∆V ≈ v · n∆S∆t

So the mass of this volume of fluid is

∆m ≈ δv · n∆S∆t = F · n∆S∆t
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It follows that the rate at which mass is leaving the region D across the

patch ∆S is roughly

∆m

∆t
≈ F · n∆S

Summing over S yields
∑

∆m

∆t
≈

∑

F · n∆S(5)

So the right-hand side of this last equation gives an estimate of the

average rate at which mass flows across S.

Notice that the right-hand side of (5) is a Riemann sum. So if S and F

are nice enough, ∆t → 0 and ∆S → 0 produces

dm

dt
=

¨

S

F · n dS

This leads to the following definition.

Definition. The Surface Integral of F over S

If F is a continuous vector filed defined on an oriented surface S with

unit normal vector n, then the surface integral of F over S is

(6)

¨

S

F · dS =

¨

S

F · n dS

This integral is also called the flux of F across S.
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If S is defined by a vector function r(u, v) over some domain D, then

n =
ru × rv

|ru × rv|
or n = − ru × rv

|ru × rv|

Here we choose the quantity that gives us the preferred direction.

It follows that
¨

S

F · dS =

¨

S

F · n dS

=

¨

S

F · ru × rv

|ru × rv|
dS

=

¨

D

[

F (r(u, v)) · ru × rv

|ru × rv|

]

|ru × rv| dA

=

¨

D

F (r(u, v)) · (ru × rv) dA(7)
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Example 3.

Find the flux of the field F = y i + x j across the portion of the sphere

x2 + y2 + z2 = a2 in the first octant in the direction away from the origin.

x
y

z

Let g(x, y, z) = x2 + y2 + z2. Then the given surface, call it S, is just the

level surface g = a2. Observe that S can defined by the vector equation

r(φ, θ) = a sinφ cos θ i + a sinφ sin θ j + a cosφk, (φ, θ) ∈ D

and

rφ × rθ = a2 sin2 φ cos θ i + a2 sin2 φ sin θ j + a2 sinφ cosφk

Here D = {(φ, θ) : 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2}. (See examples 4 and 10

from section 16.6 in the text.)



16.7 10

It follows that,
¨

S

F · dS =

¨

D

F (r(u, v)) · (ru × rv) dA

=

¨

D

(a sinφ sin θ i + a sinφ cos θ j) ·
(

a2 sin2 φ cos θ i + a2 sin2 φ sin θ j + a2 sinφ cosφk
)

dA

= a3
ˆ π/2

0

ˆ π/2

0

(

sin3 φ sin θ cos θ + sin3 φ sin θ cos θ
)

dφ dθ

= a3
ˆ π/2

0

sin3 φ dφ

ˆ π/2

0

2 sin θ cos θ dθ

= ...

=
2a3

3

Redo the last example by observing that S can also be defined by the

vector equation

r(x, y) = x i + y j +
√

a2 − x2 − y2 k, (x, y) ∈ D,

where D = {(x, y) : x2 + y2 ≤ a2, x ≥ 0, y ≥ 0}.
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Example 4.

Find the flux of the field F = z2 i + x j− 3z k outward through the

surface cut from the parabolic cylinder z = 4− y2 by the planes

x = 0, x = 1, and z = 0.

x
y

z

Let S be the given parabolic cylinder and

D = {(x, y) : 0 ≤ x ≤ 1,−2 ≤ y ≤ 2}. Then S can be defined by the

vector equation

r(x, y) = x i + y j + (4− y2)k, (x, y) ∈ D

Proceeding as usual we have

rx = i and ry = j− 2y k

So that

rx × ry = 2y j + k
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Following (7) we obtain
¨

S

F · n dS =

¨

D

F (r(x, y)) · (rx × ry) dA

=

¨

D

(

z2 i + x j− 3(4− y2)k
)

· (2y j + k) dA

=

ˆ

2

−2

ˆ

1

0

(3y2 + 2xy − 12) dx dy

= ...

= −32
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Example 5.

Let S be the portion of the cylinder y = ex in the first octant, with

0 ≤ x ≤ 1 and 0 ≤ z ≤ 1. And let n be the unit vector normal to S that

points away from the yz-plane. Find the flux of the field

F = −2 i + 2y j + z k across S in the direction of n.

x
y

z

Let D = {(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1}. Then S can be defined by the

vector equation

r(x, z) = x i + ex j + z k, (x, z) ∈ D

Proceeding as before we have

rx = i + ex j and rz = k

So that

rx × rz = ex i− j
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From (7) we have
¨

S

F · n dS =

¨

D

F (r(x, z)) · (rx × rz) dA

=

¨

D

(−2 i + 2ex j + z k) · (ex i− j) dA

= −4

ˆ

1

0

ˆ

1

0

ex dx dz

= −4

ˆ

1

0

ex dx

= 4(1− e)

The given surface can also be parameterized by the vector equation

(8) r1(y, z) = ln y i + y j + z k, (y, z) ∈ D1

Exercise - Set up and evaluate an equivalent integral for Example 5

using the vector equation (8). Of course, you will need to find D1.
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Example 6. Let b > 0. Find the outward flux of the field

F =
x i + y j + z k

ρ3
, ρ =

√

x2 + y2 + z2

across the surface of the sphere S : x2 + y2 + z2 = ρ2 = b2.

Notice that the outward normal is

n =
x i + y j + z k
√

x2 + y2 + z2
=

x i + y j + z k

b

and

F · n =
x2 + y2 + z2

b4
=

1

b2

It follows that the flux across the outer surface S is
¨

S

F · n dS =

¨

S

1

b2
dS =

1

b2

¨

S

dS

=
1

b2
× surface area of S

=
1

b2
4πb2 = 4π

So the outward flux across a sphere of any radius for this vector field is

4π. We will have more to say about this example in section 16.9.


