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16.8 Stokes’ Theorem

Theorem 1. Stokes’ Theorem

The circulation of F = M i +N j + P k around the boundary C of an

oriented surface S in the direction counterclockwise to the surface’s

unit normal vector n is equal to the integral

(1)

ffi

C

F · dr =
¨

S

∇× F · n dS

The theorem holds under suitable conditions. The usual conditions are

that all functions and all derivatives are continuous.

Remark. Notice that the right-hand side of (1) is just the surface

integral of the real-valued function

g = ∇× F · n.

Now let G = ∇× F. Then the right-hand side of (1) can also be viewed

as the flux of the curl since

flux =

¨

S

G · n dS

=

¨

S

(∇× F) · n dS
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Figure 1: A parabolic cap

Example 1. Let F = 2y i− 3x j− z2 k. Let S (see Fig. 1) be the level

surface of g(x, y, z) = x2 + y2 + z = 9, z ≥ 0. Evaluate the surface

integral below using several different methods. Orient the surface so

that the vector normal has a positive k component.

(2)

¨

S

∇× F · n dS
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(a) Direct Computation

Observe that the vector equation for S is given by

r(x, y) = x i + y j + (9− x2 − y2)k, (x, y) ∈ R

where R = {(x, y) | x2 + y2 ≤ 9}. Now

rx = i− 2xk and ry = j− 2y k

so that

rx × ry = 2x i + 2y j + k

Also, it is easy to confirm that

∇× F = −5k

so that

∇× F · (rx × ry) = −5k · (2x i + 2y j + k)

= −5

It follows that
¨

S

∇× F · n dS =

¨

R

∇× F · (rx × ry) dA

=

¨

R

−5 dA

= −5

¨

R

dA

= −5× area of R

= −5× 9π
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(b) Using Stokes’ Theorem

Notice that the boundary of S is closed curve C which lives in the

xy-plane. We first compute the (counterclockwise) circulation

around the closed curve C which has the vector equation

C : r(t) = 3 cos t i + 3 sin t j, 0 ≤ t ≤ 2π

Thus

dr(t) = −3 sin t dt i + 3 cos t dt j

F = 2y i− 3x j

F(r(t)) = 6 sin t i− 9 cos t j

so that

F(r(t)) · dr = (−18 sin2 t− 27 cos2 t) dt

= (−18− 9 cos2 t) dt

Now by Stokes’ Theorem (1)
¨

S

∇× F · n dS =

ffi

C

F · dr

=

ˆ

2π

0

(
−18− 9 cos2 t

)
dt

= −36π − 9π

= −45π

in agreement with part (a).
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Figure 2: F
z=0

= 2y i− 3x j

(c) Exploiting Green’s Theorem

As we observed above, the boundary of S happens to lie in the

xy-plane (see Fig. 2). Now let R be as indicated in part a. Then by

Stokes’ Theorem and (the tangential form of) Green’s Theorem, we

have
¨

S

∇× F · n dS =

ffi

C

F · dr =
¨

R

∇× F · k dS

Now by part a, ∇× F · k = −5. Hence
¨

S

∇× F · n dS =

¨

R

∇× F · k dA

= −5

¨

R

dA

= −5× area of R = −45π

as we saw above.
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Figure 3: Continuously deformed “parabolic cap” from Example 1

Example 2. Let F = 2y i− 3x j− z2 k be the vector field from the

previous example and let S ′ be the surface shown in Figure 3. Notice

that S ′ has the same boundary C : r(t) = 3 cos t i + 3 sin t j, 0 ≤ t ≤ 2π.

Then by Stokes’ Theorem
¨

S′
∇× F · n dS =

ffi

C

F · dr

= −45π
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The following identity has wide applications.

An Important Identity

curl grad f = 0

or

∇×∇f = 0

Notice that the RHS is a vector. The identity is easy to prove if f (x, y, z)

has continuous second partials (see the text).

Example 3. Let C be the boundary of any smooth orientable surface S

in space. Show that the circulation of F = 2x i + 2y j + 2z k around C is

zero.

Although we can compute ∇× F directly, we’ll try another approach.

Let f (x, y, z) = x2 + y2 + z2 then ∇f = 2x i + 2y j + 2z k = F and

∇× F = ∇×∇f = 0

Now by Stokes’ Theorem the circulation of F around C is

ffi

C

F · dr =
¨

S

∇× F · n dS

=

¨

S

0 · n dS

= 0
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Example 4. Recognizing Integrals

Suppose that C is the smooth boundary of the region R or the

orientable surface S. Identify each of the following integrals as either a

flux or flow integral (or neither). Also, give any other useful information.

(a)

ffi

C

4xy dx− 3x dy

This integral can be interpreted in two (equivalent) ways.

As a flow integral (circulation)

Let

F = 4xy i− 3x j

then
ffi

R

F · dr =
ffi

C

4xy dx− 3x dy

=

¨

R

(
∂(−3x)

∂x
− ∂(4xy)

∂y

)

dA

=

¨

R

(−3− 4x) dA

by Green’s Theorem.
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As a flux integral

Let

F = −3x i− 4xy j

then
ffi

R

F · n ds =

ffi

C

−3x dy − (−4xy) dx

=

¨

R

(
∂(−3x)

∂x
+

∂(−4xy)

∂y

)

dA

=

¨

R

(−3− 4x) dA

by Green’s Theorem.
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(b)

¨

S

G · n dS

This is the flux of the three-dimensional vector field G across the

oriented surface S. It is also just the surface integral of the

real-valued function G · n.

(c)

¨

S

∇× F · n dS

This is a “flux of the curl” integral. If ∂S is nice enough, then we

may apply Stokes’ Theorem to conclude that this is also a

circulation integral
¨

S

∇× F · n dS =

ffi

∂S

F · dr



16.8 11

Example 5. Let F = x2y i + 2y3z j + 3z k and let S be the surface

whose vector equation is

r(s, t) = s cos t i + s sin t j + sk, (s, t) ∈ R

where R = {(s, t) | 0 ≤ s ≤ 1, 0 ≤ t ≤ 2π}. Calculate the flux of the curl

of F across S in the direction away from the z-axis. So the vector

normal to the surface should have a negative k component.

We remark that S is the cone z =
√

x2 + y2, z ≤ 1.

We first calculate
˜

S ∇× F · n dS directly. Proceeding in the usual way

we have

rs = cos t i + sin t j + k

rt = −s sin t i + s cos t j

Thus

rs × rt = −s cos t i− s sin t j + sk

Since the k component is positive, we choose

rt × rs = −rs × rt = s cos t i + s sin t j− sk

A routine calculation yields

∇× F = −2y3 i− x2 k

= −2s3 sin3 t i− s2 cos2 tk

So that

∇× F · (rt × rs) = (−2s3 sin3 t i− s2 cos2 tk) · (s cos t i + s sin t j− sk)

= s3 cos2 t− 2s4 sin3 t cos t
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It follows that
¨

S

∇× F · n dS =

¨

R

∇× F · (rt × rs) dA

=

¨

R

(
s3 cos2 t− 2s4 sin3 t cos t

)
dA

=

¨

R

s3 cos2 t dA−
¨

R

2s4 sin3 t cos t dA

Now the second integral is zero since
¨

R

2s4 sin3 t cos t dA =

ˆ

2π

0

ˆ

1

0

2s4 sin3 t cos t ds dt

=

ˆ

1

0

2s4 ds

ˆ

2π

0

sin3 t cos t dt

= 0

For the first integral we have
¨

R

s3 cos2 t dA =

ˆ

1

0

s3 ds

ˆ

2π

0

cos2 t dt

=
1

4
× π

It follows that
¨

S

∇× F · n dS =
π

4
− 0



16.8 13

Example 6. Rework the previous example by evaluating the integral
fl

C F · dr directly and applying Stokes’ Theorem. Here C is the

boundary of the surface S from Example 5.

Notice that C is circle x2 + y2 = 1, z = 1. Thus C can be parameterized

by the vector equation

r(t) = cos t i− sin t j + k, 0 ≤ t ≤ 2π

since the circle must be parameterized in the clockwise direction when

viewed from above. It follows that
dr

dt
= − sin t i− cos t j

and

F(r(t)) = − cos2 t sin t i− 2 sin3 t j + 3k

Thus

F · dr =
(
cos2 t sin2 t + 2 sin3 t cos t

)
dt

So by Stokes’ theorem
¨

S

∇× F · n dS =

ffi

C

F · dr

=

ˆ

2π

0

(
cos2 t sin2 t + 2 sin3 t cos t

)
dt

=

ˆ

2π

0

cos2 t sin2 t dt + 0

=
1

4

ˆ

2π

0

sin2 2t dt

=
π

4
as we saw above.
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Example 7. Let F = y i + xz j + x2 k and let C be the boundary of the

triangle cut from the plane x + y + z = 1 by the first octant.

Calculate the circulation of F around C counterclockwise when viewed

from above. That is, evaluate
fl

C F · dr.

Let S be the given triangular region. Then S can be parameterized by

the vector equation

r(x, y) = x i + y j + (1− x− y)k, (x, y) ∈ R

where R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. Thus

rx × ry = i + j + k

and

∇× F = −x i− 2x j− (x + y)k

Then by Stokes’ Theorem
ffi

C

F · dr =
¨

S

∇× F · n dS

=

¨

R

(−x i− 2x j− (x + y)k) · ( i + j + k) dA

= −
ˆ

1

0

ˆ

1−x

0

(4x + y) dy dx

= ...

= −5/6
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Example 8. Rework the previous example by evaluating the line

integral
fl

C F · dr directly.

Let C1 be the line segment from P (1, 0, 0) to Q(0, 1, 0). Then C1 can be

parameterized by the vector equation

r(t) = (1− t) i + t j, t ∈ [0, 1]

Then dr = (− i + j) dt and

F(r(t)) = t i + (1− t)2 k and F · dr = −t dt

Thus
ˆ

C1

F · dr = −
ˆ

1

0

t dt = −1/2

Now let C2 be the line segment from Q to T (0, 0, 1). It is straightforward

to show that
´

C2
F · dr = 0. Finally, let C3 be the line segment from T to

P . Then C3 can be parameterized by the vector equation

r(t) = t j + (1− t)k, t ∈ [0, 1]

So that

dr = ( j− k) dt and F · dr = −t2 dt

It follows that
ˆ

C3

F · dr =
ˆ

1

0

−t2 dt = −1/3

Thus
ffi

C

F · dr =
ˆ

C1

F · dr +
ˆ

C2

F · dr +
ˆ

C3

F · dr

= −1/2 + 0− 1/3 = −5/6

as we saw above.
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Example 9. Let S be the cylinder x2 + y2 = a2, 0 ≤ z ≤ h, together

with its top, x2 + y2 ≤ a2, z = h. Let F = −y i + x j + x2 k. Calculate the

flux of ∇× F outward through S.

The boundary of S has the vector equation

r(t) = a cos t i + a sin t j, 0 ≤ t ≤ 2π

Now

dr

dt
= −a sin t i + a cos t j,

F(r(t)) = −a sin t i + a cos t j

So by Stokes’ Theorem
¨

S

∇× F · n dA =

ffi

C

F · dr

=

ˆ

2π

0

a2(sin2 t + cos2 t) dt = 2πa2
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Figure 4: Space curve generated by the intersection of a plane with an inverted cone.

Example 10. Let F =
〈
−6y, y2z, 2x

〉
and let C be the closed curve

generated by the intersection of the cone z = −
√

x2 + y2 and the plane√
3y + 2z = −4. The curve C (an ellipse) is shown in Figure 4. Evaluate

the circulation integral
fl

C F · dr. Orient C to be counterclockwise when

viewed from above. (C.f. Example 1 from the text book.)

Instead of evaluating the integral directly, let’s appeal to Stokes’

Theorem. A straightforward calculation yields

curlF = ∇× F = −y2 i− 2 j + 6k. Although we are free to choose any

(nice) surface whose boundary is C, it will be easiest if we work with

the elliptical region S in the plane
√
3y + 2z = −4 that is bounded by C.

Figure 5 shows the surface S reflected across the xy-plane (for easier

viewing).

Now let Rxy be the projection of S onto the xy-plane. We leave it as an

exercise to show that the boundary of Rxy is the ellipse

(3) g(x, y) =def x
2

16
+

(y − 4
√
3)2

64
= 1

So the region Rxy is defined by the inequality g(x, y) ≤ 1.
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Figure 5: (Reflected) Surface S and its projection Rxy

Notice that we can parameterize S by the vector equation

r(x, y) = x i + y j−
(

2 +

√
3y

2

)

︸ ︷︷ ︸

h

k, (x, y) ∈ Rxy(4)

It follows that

rx × ry = −∂h

∂x
i− ∂h

∂y
j + k =

√
3

2
j + k
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So by Stokes’ Theorem
ffi

C

F · dr =
¨

S

∇× F · n dS

=

¨

Rxy

(−y2 i− 2 j + 6k) ·
(√

3

2
j + k

)

dA

= (6−
√
3)

¨

Rxy

dA

= (6−
√
3)× area of the ellipse from (3)

= (6−
√
3)× 32π

Example 11. Redo the previous example by directly computing the

circulation integral
´

C F · dr. Notice that C can be defined by the vector

equation

r(t) = 4 cos t i + (8 sin t + 4
√
3) j− (8 + 4

√
3 sin t)k, 0 ≤ t ≤ 2π

and

dr = (−4 sin t i + 8 cos t j− 4
√
3 cos tk) dt

Thus

F = −6(8 sin t + 4
√
3) i + (8 sin t + 4

√
3)2(8 + 4

√
3 sin t) j + 8 cos tk

so that

F · dr = (24 sin t(8 sin t + 4
√
3)

+ 8 cos t(8 sin t + 4
√
3)2(8 + 4

√
3 sin t)− 32

√
3 cos2 t) dt
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It follows that
ffi

C

F · dr =
ˆ

2π

0

F · dr = · · · = 32(6−
√
3)π

as we saw above. However, computing the surface integral was

certainly easier than the calculation above.

Example 12. Redo Example 10 by using the vector equation below

instead of (4).

r(x, z) = x i +
−2√
3
(2 + z)

︸ ︷︷ ︸
q

j + z k, (x, z) ∈ Rxz(5)

Then

rx × rz = −∂q

∂x
i + j− ∂q

∂z
j = j +

2√
3
k

Here Rxz is the projection of S onto the xz-plane. We leave it as an

exercise to show that Rxz is the set of points (x, z) that satisfy

x2

16
+

(z + 8)2

48
≤ 1
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Once again by Stokes’ Theorem we have
ffi

C

F · dr =
¨

S

∇× F · n dS

=

¨

Rxz

(−y2 i− 2 j + 6k) ·
(

j +
2√
3
k

)

dA

=

(
12√
3
− 2

)
¨

Rxz

dA

=

(
12√
3
− 2

)

× area of the elliptical region Rxz

=

(
12√
3
− 2

)

× 16π
√
3

= 32(6−
√
3)π
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Example 13. Now let G =

〈

x2y,
x3

3
,
−2xy√

3

〉

and let C be the ellipse

defined in Example 10. Find
fl

C G · dr.

Let S and Rxy be as defined in Example 10. Then by Stokes’ Theorem
ffi

C

G · dr =
¨

S

∇×G · n dS

=
1√
3

¨

Rxy

(−2x i + 2y j) ·
(√

3

2
j + k

)

dA

=

¨

Rxy

y dA

=

ˆ

8+4
√
3

−8+4
√
3

ˆ

√
64−(y−4

√
3)2

2

−
√

64−(y−4
√
3)2

2

y dx dy

=

ˆ

8+4
√
3

−8+4
√
3

y

√

64− (y − 4
√
3)2 dy

=

ˆ

8

−8

(w + 4
√
3)
√

64− w2 dw

=

ˆ

8

−8

w
√

64− w2 dw + 4
√
3

ˆ

8

−8

√

64− w2 dw

= 0 + 4
√
3× 32π
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Figure 6: Cylindrical surface S bounded by the space curve C

Example 14. Let F =
〈
2z, 3xy2, x2 + y

〉
and let S be the cylindrical

shell x2 + y2 = 1, bounded below by the unit disk x2 + y2 ≤ 1 in the

xy-plane and with an open top that lies in the plane T : 2x + z = 6.

Also, let C be the boundary of S oriented counterclockwise when

viewed from above (see Figure 6). Use Stokes’ Theorem to evaluate

the circulation of F around C.

As a general rule, we are permitted to use the most convenient

piecewise smooth surface that has boundary C (which would be the

ellipse in the plane T in this case). However, the theorem must also

hold for S. Notice that S = SB ∪ SC where SB is the base (in the

xy-plane and SC is the cylinder.

A routine calculation yields ∇× F =
〈
1, 2− 2x, 3y2

〉
.
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For the base we have
¨

SB

∇× F · n dS =

¨

SB

∇× F · k dS

=

¨

unit disk

(3y2 − 0) dA

= 3

ˆ

2π

0

ˆ

1

0

r2 sin2 θ r dr dθ

=
3

4

ˆ

2π

0

sin2 θ dθ =
3π

4

Notice that SC can be parameterized by the vector equation

r(s, t) = cos t i + sin t j + sk, (s, t) ∈ D

where D = {(s, t) : 0 ≤ t ≤ 2π, 0 ≤ s ≤ 6− 2 cos t}. Also,

rs × rt = − cos t i− sin t j

Now
¨

SC

∇× F · n dS =

ˆ

2π

0

ˆ

6−2 cos t

0

〈
1, 2− 2 cos t, 3 sin2 t

〉
·〈− cos t,− sin t〉 ds dt

=

ˆ

2π

0

ˆ

6−2 cos t

0

(2 cos t− 2) sin t− cos t ds dt

...

= 2π

Thus
ˆ

C

F · dr =
¨

S

∇× n dS =
3π

4
+ 2π
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Exercise: In Figure 6 from Example 14, let SE be the elliptical region

that lies in the plane T (and is bounded by C). Find the flux of the curl
˜

SE
∇×F ·n dS. Also, evaluate the circulation integral

fl

C F · dr directly.

x

y

z

x

y

C

S

Figure 7: Curved elliptical surface S bounded by the space curve C

Example 15. Let F =
〈
−3y, x2z, x

〉
and let C be the intersection of the

cylinders x2 + y2 = 4 and z = 4 + y2/2. Find the counterclockwise

circulation (when viewed from above) of F around C (see Figure 7).

Let S be the interior of C on the cylinder z = 4 + y2/2. Then S can be

defined by the vector equation

r(s, t) =

〈

s cos t, s sin t, 4 +
s2 sin2 t

2

〉

, (s, t) ∈ D

where D = {(s, t) | 0 ≤ s ≤ 2, 0 ≤ t ≤ 2π}. Now

rs =
〈
cos t, sin t, s sin2 t

〉

rt =
〈
−s sin t, s cos t, s2 sin t cos t

〉

so that

rs × rt =
〈
0,−s2 sin t, s

〉
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Now a routine calculation shows that ∇× F =
〈
−x2,−1, 3 + 2xz

〉
. Thus

∇× F(r(s, t)) =

〈

−s2 cos2 t,−1, 3 + 2s cos t

(

4 +
s2 sin2 t

2

)〉

and

∇× F(r(s, t)) · (rs × rt) = 3s + 8s2 cos t + s2 sin t + s4 cos t sin2 t

So by Stokes’ Theorem
ffi

C

F · dr =
¨

S

∇× F · n dS

=

¨

D

∇× F(r(s, t)) · (rs × rt) ds dt

=

ˆ

2π

0

ˆ

2

0

(3s + 8s2 cos t + s2 sin t + s4 cos t sin2 t) ds dt

= 6π

ˆ

2

0

s ds + 0 + 0 + 0

= 12π

Exercise: In the above example, evaluate
fl

C F · dr directly.
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Integral Theorems, Flux and Flow - Summary

As we saw earlier, we can imagine the del operator defined in this

chapter as also being defined on two-dimensional vector fields by

writing

F = M i +N j = M i +N j + 0k

whenever it is appropriate.

Now using the “del” notation we can rewrite all the integral theorems

using a uniform notation.
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We recall a few important definitions.

Definition. Circulation Density at a Point

The circulation density or curl of a vector field F is

curlF = ∇× F

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

M N P

∣
∣
∣
∣
∣
∣
∣
∣
∣

As we saw earlier, this reduces to the usual k-component of curl

whenever P = 0 and F = F
z=0

.

Definition. Flux Density at a Point

The flux density or divergence of a vector field F is

divF = ∇ · F

Once again, this reduces to the usual two-dimensional version

whenever P = 0.
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For circulation around a smooth closed curve C we have

Green’s Theorem (Tangential Form):
ffi

C

F · dr =
ffi

C

M dx +N dy

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

dA

=

¨

R

∇× F · k dA

Stokes’ Theorem:
ffi

C

F · dr =
¨

S

∇× F · n dS

In the first case, C is the boundary of the plane region R. In the

second, C is the boundary of the oriented surface S.
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For the flux around the smooth closed curve C of an orientable surface

S we have

Green’s Theorem (Normal Form):
ffi

C

F · n ds =

ffi

C

M dy −N dx

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

dA

=

¨

R

∇ · F dA

Divergence Theorem:
¨

S

F · n dS =

˚

D

∇ · F dV

Once again C is the boundary of the plane region R and D is the

region enclosed by the oriented surface S.


