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16.8 Stokes’ Theorem

Theorem 1. Stokes’ Theorem

The circulation of F = M i+ N j+ Pk around the boundary C' of an
oriented surface S in the direction counterclockwise to the surface’s
unit normal vector n is equal to the integral

(1) yéF-dr_/[SvXF.nds

The theorem holds under suitable conditions. The usual conditions are
that all functions and all derivatives are continuous.

Remark. Notice that the right-hand side of (1) is just the surface
integral of the real-valued function

g=V xXF-n.

Now let G = V x F. Then the right-hand side of (1) can also be viewed
as the flux of the curl since

qux—/ G -ndS

/ V xF)-ndS
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Figure 1: A parabolic cap

Example 1. Let F =2yi —3zj — 2°k. Let S (see Fig. 1) be the level
surface of g(x,y,2) = 22 +y> + 2 =9, z > 0. Evaluate the surface
integral below using several different methods. Orient the surface so

that the vector normal has a positive k component.

(2) //SVXF-ndS



16.8
(a) Direct Computation

Observe that the vector equation for S is given by
r(z,y) =ci+yj+ (9—2* -1k, (v,y) €R
where R = {(z,y) | 2>+ v* < 9}. Now
r,=1i—2zk and r,=j—2yk

so that

r, Xr,=2ri+2yj+ k
Also, it is easy to confirm that

V xF=-5k
so that

VXxF-(r,xr,)=-5k-(2ri+2yj+ k)
= —5

It follows that

//SVXF.ndS://RVxF-(rxxry)dA
- [[ -sas
——5//}20[14

= —-5Hxareaof R

= —5H X9
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(b) Using Stokes’ Theorem

Notice that the boundary of S is closed curve C which lives in the
zy-plane. We first compute the (counterclockwise) circulation
around the closed curve C which has the vector equation

C: r(t)=3costi+3sintj, 0<t<2rm

Thus
dr(t) = —3sintdt i+ 3costdt j
F=2yi—3x]
F(r(t)) = 6sint i — 9cost j
so that

F(r(t)) - dr = (—18sin’t — 27 cos’ t) dt
= (—18 — 9cos? t) dt

Now by Stokes’ Theorem (1)

//VxF-ndS:§£F-dr
S C

2
= / (—18 — 9cos? t) dt
0
= —36m — 97
= —4571

in agreement with part (a).
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Figure 2: F =2yi—3zj
z=0

(c) Exploiting Green’s Theorem

As we observed above, the boundary of S happens to lie in the
zy-plane (see Fig. 2). Now let R be as indicated in part a. Then by
Stokes’ Theorem and (the tangential form of) Green’s Theorem, we

have
//VXF ndsS = §I§F dr—/VxF kdS

Now by parta, V x F - k = —5. Hence

//VxF-ndS://VxF-de
S R
=—5//dA
R

= —5H x areaof R = —457

as we saw above.
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Figure 3: Continuously deformed “parabolic cap” from Example 1

Example 2. Let F = 2yi — 32 j — 2° k be the vector field from the
previous example and let S” be the surface shown in Figure 3. Notice
that S’ has the same boundary C: r(t) =3cost i+ 3sint j, 0 <t < 2.

Then by Stokes’ Theorem

VXF-ndS=¥F- dr
s/ C

= —457



16.8 7
The following identity has wide applications.

An Important Identity

curlgrad f =0
or
VxVf=0

Notice that the RHS is a vector. The identity is easy to prove if f(z,y, 2)
has continuous second partials (see the text).

Example 3. Let C' be the boundary of any smooth orientable surface S
in space. Show that the circulation of F = 2x1i+ 2y j + 2zk around C'is
zero.

Although we can compute V x F directly, we'll try another approach.
Let f(z,y,2) =2 +y* +22then Vf =22i+2yj+ 22k = F and

VXF=VxVf=0

Now by Stokes’ Theorem the circulation of F around C'is

%F dr—/ V XF - -ndS
C
//O ndS
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Example 4. Recognizing Integrals

Suppose that C' is the smooth boundary of the region R or the
orientable surface S. Identify each of the following integrals as either a
flux or flow integral (or neither). Also, give any other useful information.

(a) % dxy dx — 3x dy
C
This integral can be interpreted in two (equivalent) ways.
As a flow integral (circulation)

Let
F=4xyi—3x]

%%F-drzgéélazyd:ﬁ—?)xdy
://R(@((;jﬂ:) _3(;;«;3;)) "
://]%(—3—4x)dA

then

by Green’s Theorem.
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As a flux integral

Let
F=-3zi—4xy]

then

7%1? nds =§I§O—3mdy () da
(A o
_ //R (—3— 42)dA

by Green’s Theorem.
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(b)//SG-ndS

This is the flux of the three-dimensional vector field G across the
oriented surface S. It is also just the surface integral of the
real-valued function G - n.

(C)//SVXF-ndS

This is a “flux of the curl” integral. If 95 is nice enough, then we
may apply Stokes’ Theorem to conclude that this is also a

circulation integral
//VxF-ndS=?§ F - dr
S oS

10
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Example 5. LetF = 2%yi+ 2y°2j + 32k and let S be the surface
whose vector equation is

r(s,t) =scosti+ssintj+ sk, (s,t)€R

where R = {(s,1) | 0 < s <1, 0 <t < 2r}. Calculate the flux of the curl
of F across S in the direction away from the z-axis. So the vector
normal to the surface should have a negative k component.

We remark that S is the cone z = /22 + 92, z < 1.

We first calculate [[,V x F -ndS directly. Proceeding in the usual way
we have

ri =costi+sintj+ k
r, = —ssinti—+ scost]j
Thus
r X r; = —scosti— ssintj+ sk
Since the k component is positive, we choose
ry Xry=—Ts XT; =scosti+ ssintj— sk
A routine calculation yields
VxF=-21—2%k
= —2s5%sinti — s°cos’tk
So that
VxF-(r,xr,) =(—2s’sin’ti — s*cos’tk) - (scosti+ ssintj— sk)

— 5% cos’t — 2s*sin® tcost
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It follows that

//VxF-ndS://VXF-(rter)dA
S R

— // (33 cos’ t — 2s* sin® ¢ cos t) dA
R

://SSCOSQtdA—//284Sin3tCOStdA
R R

Now the second integral is zero since

2 1
// 2s*sin®tcost dA = / / 2s*sin® t cost ds dt
R o Jo
1 21
= / 25* ds / sin® t cost dt
0 0
=(

For the first integral we have

1 2T
// s3cos’tdA = s> ds cos® t dt
R 0 0

1><
=—-XT
4

//VXF-ndszf—o
. A

It follows that

12
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Example 6. Rework the previous example by evaluating the integral
¢ F - dr directly and applying Stokes’ Theorem. Here C'is the
boundary of the surface S from Example 5.

Notice that C is circle 2> +y> =1, z = 1. Thus C can be parameterized
by the vector equation

r(t) =costi—sintj+ k, 0<t<2n

since the circle must be parameterized in the clockwise direction when
viewed from above. It follows that

dr . :
a7 —sint1— cost]
and
F(r(t)) = —cos’tsinti— 2sin’tj + 3k
Thus

F.dr = ((3082 tsin®t + 2sin® t cos t) dt
So by Stokes’ theorem

//VXF'ndS:?gF'dr
S C

2
= / (0082 tsin’t + 2sin® ¢ cos t) dt
0

21
:/ cos> tsin®tdt + 0
0
1 271'
:—/ sin® 2t dt
4 Jo

as we saw above.
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Example 7. LetF =yi+a22j+ 2%k and let C be the boundary of the
triangle cut from the plane x + y + z = 1 by the first octant.

Calculate the circulation of F around C counterclockwise when viewed
from above. That is, evaluate ¢ F - dr.

Let S be the given triangular region. Then S can be parameterized by
the vector equation
r(z,y)=zi+yj+(1—xz—yk, (r,y)€R
where R = {(z,y) |0<z <1, 0<y <1—=a}. Thus
r, xr,=1i+j+ k
and
VxF=—zi—2rj— (z+yk

Then by Stokes’ Theorem

%F-dr://VxF-nds
C S

—//R(—:ci—Z:Uj—(x—i—y)k)°(i+j+ k) dA
__/Olfolx(4x+y)dydx

= —5/6
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Example 8. Rework the previous example by evaluating the line
integral ¢, F - dr directly.

Let C; be the line segment from P(1,0,0) to Q(0,1,0). Then C} can be
parameterized by the vector equation
r(t)=(1—t)i+tj telo,1]
Then dr = (—i+ j)dt and
F(r(t))=ti+ (1 -t*k and F.-dr= —tdt

1
/ F-dr:—/ tdt=—1/2
Ch 0

Now let C; be the line segment from @ to 7°(0,0, 1). It is straightforward
to show that |, F - dr = 0. Finally, let C; be the line segment from 7" to
P. Then (5 can be parameterized by the vector equation

rit)=tj+(1—t)k, te]0,1]

Thus

So that
dr=(j— k)dt and F.dr= —t*dt

1
/F-dr:/ —t*dt = —1/3
Cs 0
¢F~dr:/F~dr+/F~dr+/F-dr
C Cl 02 C(3

=—-1/24+0—-1/3=-5/6

It follows that

Thus

as we saw above.
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Example 9. Let S be the cylinder 22 + y* = a?, 0 < z < h, together
with its top, 22 + y> < a?, z = h. Let F = —yi + 2 j + 2° k. Calculate the
flux of V x F outward through S.

The boundary of S has the vector equation

r(t) =acosti+asintj, 0<t<2rm

Now
dr
dt
F(r(t)) = —asinti+ acostj

= —asinti+ acost]j,

So by Stokes’ Theorem

//VxF-ndAzygF-dr
S C

2m
= / a?(sin’t 4 cos* t) dt = 2ma*
0
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Figure 4: Space curve generated by the intersection of a plane with an inverted cone.

Example 10. Let F = (—6y, y*z, 2z) and let C be the closed curve
generated by the intersection of the cone z = —\/2? + y? and the plane
V3y 4+ 2z = —4. The curve C (an ellipse) is shown in Figure 4. Evaluate
the circulation integral ¢, F - dr. Orient C to be counterclockwise when
viewed from above. (C.f. Example 1 from the text book.)

Instead of evaluating the integral directly, let’'s appeal to Stokes’
Theorem. A straightforward calculation yields

curlF =V x F = —¢%i — 2j + 6 k. Although we are free to choose any
(nice) surface whose boundary is C, it will be easiest if we work with
the elliptical region S in the plane /3y + 2z = —4 that is bounded by C.
Figure 5 shows the surface S reflected across the zy-plane (for easier
viewing).

Now let R,, be the projection of S onto the zy-plane. We leave it as an
exercise to show that the boundary of R, is the ellipse

_de 2 (y—4V3)? _
(3) 9(x,y) —def 1—6+ 6l =1

So the region R, is defined by the inequality g(x,y) < 1.
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Figure 5: (Reflected) Surface S and its projection R,,

Notice that we can parameterize S by the vector equation

3
(4) r(r.y) = vityj- <2+%> k. (z,y) € Ry,
0
It follows that
h h 3
rxxry:—a—i—a—j—k k:£j+ k

Ox oy 2

18
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So by Stokes’ Theorem

?gF dr—/ V X F-ndS
//R —%i—2j+6k) - <§J+k> dA
—(6—\/5)//& dA

= (6 — v/3) x area of the ellipse from (3)
— (6 — V/3) x 327

Example 11. Redo the previous example by directly computing the
circulation integral [, F - dr. Notice that C' can be defined by the vector
equation

r(t) =4costi+ (8sint+4v3)j— (8+4v3sint)k, 0<t<2n

and

dr = (—4sinti+8costj — 4v3costk) dt
Thus

F = —6(8sint +4v/3)i+ (8sint + 4v/3)%(8 + 4v/3sint) j + Scostk
so that

F - dr = (24sint(8sint + 4v/3)
+ 8cost(8sint + 4v3)%(8 + 4v/3sint) — 32v/3 cos’ t) dt
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It follows that

2m
%F-dr:/ F.dr=--=32(6-3)r
C 0

as we saw above. However, computing the surface integral was
certainly easier than the calculation above.

Example 12. Redo Example 10 by using the vector equation below
instead of (4).

(5) r(m,z):$i+%(2+z)j+zk, (x,2) € Ry,
N———
q
Then
Jq . Jdqg . 2
r, Xr, = — axl—l—J—a—J J+\/§k

Here R,. is the projection of S onto the zz-plane. We leave it as an
exercise to show that R,. is the set of points (z, z) that satisfy

v? (2 +8)?

16 48

<1

20
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Once again by Stokes’ Theorem we have

%F-dr:/VXF-ndS
C S
—// (—Qi—2'+6k)-<'+ik> dA
-~ Y J J /3
_ (L2, // aA

2) x area of the elliptical region R,

— 21 X 1677\/5

£
(&
G

21
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3 —2zy

Example 13. Now let G = { 2%y, —,
p (.57
defined in Example 10. Find ¢, G - dr.

> and let C be the ellipse

Let S and R,, be as defined in Example 10. Then by Stokes’ Theorem

éG-dr—//SVXG-ndS
:%//ny(—Z:ciJrQyj)- (?H k) dA
://RmyydA

8+4v/3 v y 3
/8+4\/_/V64 (y=4v/3)2 > y da dy
8+4v/3
[ i (- avaprdy
—8+4+/3
8
= / (w + 4v3)V/64 — w? dw

8 8
:/ w\/64—w2dw+4\/§/ \/ 64 — w? dw
-8 -8

— 0 +4v3 x 327
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Figure 6: Cylindrical surface S bounded by the space curve C

Example 14. Let F = (2z,3zy% 2° + y) and let S be the cylindrical
shell 22 + y? = 1, bounded below by the unit disk 2> + y? < 1 in the
xy-plane and with an open top that lies in the plane T : 2z + z = 6.
Also, let C be the boundary of S oriented counterclockwise when
viewed from above (see Figure 6). Use Stokes’ Theorem to evaluate
the circulation of F around C.

As a general rule, we are permitted to use the most convenient
piecewise smooth surface that has boundary C' (which would be the
ellipse in the plane T in this case). However, the theorem must also
hold for S. Notice that S = Sz U S where S is the base (in the
xy-plane and S¢ is the cylinder.

A routine calculation yields V x F = (1,2 — 2z, 3y?).

23
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For the base we have

// VxF-ndS—// V x F-kdS
Sp Sp
:// (3y* — 0)dA
unit disk
27
—3/ / sin? 0 r dr df
21/0 sin Qdﬁ—%

Notice that S can be parameterized by the vector equation
r(s,t) =costi+sintj+sk, (s,t)e D
where D = {(s,t): 0 <t <27, 0 < s <6—2cost}. Also,
ry X r; = —costi—sintj

Now

2 p6—2cost
/ VxF-ndS:/ / <1,2—QCost,3Sin2t>-<—cost,—Sint>dsdt
Sc 0 0

2w p6—2cost
:/ / (2cost —2)sint — costds dt

= 2

Thus

/F-dr:/ VxndS:3—7T+27r
C S 4
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Exercise: In Figure 6 from Example 14, let Si be the elliptical region
that lies in the plane T' (and is bounded by C'). Find the flux of the curl
JI5, V x F-ndS. Also, evaluate the circulation integral ¢, F - dr directly.

T

Figure 7: Curved elliptical surface S bounded by the space curve C

Example 15. Let F = (—3y,2°z,z) and let C be the intersection of the
cylinders 22 + ¢y?> = 4 and z = 4 + »?/2. Find the counterclockwise
circulation (when viewed from above) of F around C (see Figure 7).

Let S be the interior of C on the cylinder z = 4 + /2. Then S can be

defined by the vector equation

s2sin®t

r(s,t) = <s cost,ssint, 4 +

> , (s,t) e D
where D = {(s,1) |0 < s <2, 0 <t <27}. Now

ry = <cost,sin t,ssin2 t>

r; = <—s sint, scost, s*sint cos t>
so that

ry X ry = <O, —s%sint, 3>
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Now a routine calculation shows that V x F = (—2?, —1,3 + 2zz). Thus

2 2
t
V x F(r(s,t)) = <—82 cos’ t,—1,34+ 2scost (4—|— i S;n )>

and

V x F(r(s,t)) - (rs x 1) = 35 + 8s* cost + s*sint + s cost sin’¢

So by Stokes’ Theorem

%F-dr://VxF-ndS
C S

_ // V x F(r(s,t)) - (v, x 1) ds dt
D
2 2
:/ / (35 4+ 8s%cost + s*sint + s* cost sin*t) ds dt
0o Jo

2
:67'('/ sds+0+0+0
0

— 127

Exercise: In the above example, evaluate ¢ F - dr directly.
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Integral Theorems, Flux and Flow - Summary

As we saw earlier, we can imagine the del operator defined in this
chapter as also being defined on two-dimensional vector fields by
writing

F=Mi+Nj=Mi+Nj+0k
whenever it is appropriate.

Now using the “del” notation we can rewrite all the integral theorems
using a uniform notation.
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We recall a few important definitions.

Definition. Circulation Density at a Point

The circulation density or curl of a vector field F is

curlF =V x F
i j k
Jd 0 0

or Oy 0z
M N P

As we saw earlier, this reduces to the usual k-component of curl
whenever P=0and F = F

z=0
Definition. Flux Density at a Point

The flux density or divergence of a vector field F' is

dvF =V .F

Once again, this reduces to the usual two-dimensional version
whenever P = 0.

28



16.8
For circulation around a smooth closed curve C we have

Green’s Theorem (Tangential Form):

§l§}F-dr_§l§de+Ndy
//(6N 8M> A

=/ V xF-kdA
R

Stokes’ Theorem:

%F-dr://VxF-nds
C S

In the first case, C is the boundary of the plane region R. In the
second, C'is the boundary of the oriented surface S.

29
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For the flux around the smooth closed curve C of an orientable surface
S we have

Green’s Theorem (Normal Form):

%Fm@—%M@—NW
// <8M (9N> I

= / V- -FdA
R
Divergence Theorem:

//SF-ndS=//DV-FdV

Once again C is the boundary of the plane region R and D is the
region enclosed by the oriented surface S.




