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16.9 The Divergence Theorem

Let F = M i +N j + P k. In the previous section we saw that the

circulation density for F was given by

curlF = ∇× F

We went on to generalize the circulation-curl (tangential) form of

Green’s Theorem and obtained something called Stokes’ Theorem.

In this section we’ll try the same thing with the flux-divergence (normal)

form of the Green’s Theorem.
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Divergence in Three Dimensions

Let F = M i +N j + P k. Recall that the flux density (divergence) is

given by

divF = ∇ · F

=
∂M

∂x
+

∂N

∂y
+

∂P

∂z

Theorem 1. The Divergence Theorem

Let F be a vector field whose components have continuous first partial

derivatives, and let S be a piecewise smooth oriented closed surface.

Then the flux of F across S in the direction of the surface’s outward unit

normal field n is given by

(1)

¨

S

F · n dS =

˚

D

∇ · F dV

where D is the region enclosed by the surface S.

Notice that the integrand of surface integral (LHS) is the component of

the vector field F in the direction normal to the surface S while the

integrand of the volume integral (RHS) is the flux-density (divF) over

the region D. (Compare this to the Normal Form of Green’s Theorem.)

Remark. When the region D is the focus of attention, we often refer

to S as its boundary. In such cases we will use the notation ∂D to refer

to the “boundary of D”.
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Example 1. Using the Divergence Theorem

Let F = x2 i + y2 j + z2 k. Find the outward flux across the boundary of

D if D is the cube in the first octant bounded by x = 1, y = 1, z = 1.

According to the Divergence Theorem
¨

S

F · n dS =

˚

D

∇ · F dV

The RHS calculation is very straight forward.
˚

D

∇ · F dV =

ˆ 1

0

ˆ 1

0

ˆ 1

0

(2x + 2y + 2z) dx dy dz

=

ˆ 1

0

ˆ 1

0

(1 + 2y + 2z) dy dz

=

ˆ 1

0

(2 + 2z) dz

= 3

So the outward flux is 3.



16.9 4

Let’s calculate the outward flux directly by evaluating the LHS of (1). To

do this we need to evaluate the surface integrals on the six faces of the

cube. Let S1 be the face that lies in the plane z = 1.

Then S1 is given by the vector equation

r(x, y) = x i + y j + k, (x, y) ∈ R = [0, 1]× [0, 1]

and

rx × ry = i× j = k = n

It follows that
¨

S1

F · n dS =

¨

R

(
x2 i + y2 j + 12 k

)
· k dA

=

¨

R

dA

= area of R

= 1

It is easy to show that the corresponding surface integrals on the faces

that intersect x = 1 and y = 1 are the same. Finally,
¨

S

F · n dS = 1 + 1 + 1 + 0 + 0 + 0 = 3

since the surface integrals across the faces of the cube that lie in any

of the coordinate planes is zero.
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Example 2. Flux Across a Thick Sphere

Let

F = (5x3 + 12xy2) i + (y3 + ey sin z) j + (5z3 + ey cos z)k

Find the outward flux across the boundary of the region D where D is

“the solid region between the spheres x2 + y2 + z2 = 1 and

x2 + y2 + z2 = 2”.

We appeal to the Divergence Theorem.

∂(5x3 + 12xy2)

∂x
= 15x2 + 12y2

∂(y3 + ey sin z)

∂y
= 3y2 + ey sin z

∂(5z3 + ey cos z)

∂z
= 15z2 − ey sin z

Hence

divF = ∇ · F

= 15x2 + 12y2 + 3y2 + ey sin z + 15z2 − ey sin z

= 15x2 + 15y2 + 15z2
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It follows that

flux =

¨

∂D

F · n dS

=

˚

D

∇ · F dV

=

˚

D

(
15x2 + 15y2 + 15z2

)
dx dy dz

= 15

ˆ 2π

0

ˆ φ=π

φ=0

ˆ ρ=
√
2

ρ=1

ρ4 sinφ dρ dφ dθ

= 15(2π)

ˆ φ=π

φ=0

sinφ

ˆ ρ=
√
2

ρ=1

ρ4 dρ dφ

= 15

ˆ 2π

0

ˆ φ=π

φ=0

ˆ ρ=
√
2

ρ=1

ρ4 sinφ dρ dφ dθ

= 15

(
ˆ 2π

0

dθ

)(
ˆ φ=π

φ=0

sinφ dφ

)(
ˆ ρ=

√
2

ρ=1

ρ4 dρ

)

...

= 15× 2π × 2× 4
√
2− 1

5
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Example 3.

Let D be the (elliptic) cylindrical solid bounded by 4x2 + y2 = 4 and the

planes z = 0 and z = 2. Evaluate the following integral.
¨

∂D

F · n dS

where

F = x3 i + y3 j + z2 k

Once again we will use the Divergence Theorem. Notice that

∇ · F = 3x2 + 3y2 + 2z

so that
¨

∂D

F · n dS =

˚

D

(
3x2 + 3y2 + 2z

)
dV

Can you rewrite this as an iterated integral? Hint: Although cylindrical

coordinates look tempting, it turns out to be easier to integrate using

rectangular coordinates.
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Thus
¨

∂D

F · n dS =

˚

D

(
3x2 + 3y2 + 2z

)
dV

=

ˆ 1

−1

ˆ 2
√
1−x2

−2
√
1−x2

ˆ 2

0

(3x2 + 3y2 + 2z) dz dy dx

= 4

ˆ 1

0

ˆ 2
√
1−x2

0

ˆ 2

0

(3x2 + 3y2 + 2z) dz dy dx

= 4

ˆ 1

0

ˆ 2
√
1−x2

0

(6x2 + 6y2 + 4) dy dx

= 4

ˆ 1

0

(6x2y + 2y3 + 4y)
y=2

√
1−x2

y=0

dx

= 16

ˆ 1

0

(

3x2
√

1− x2 + 4(1− x2)3/2 +
√

1− x2
)

dx

which can be evaluated using a routine trig substitution to yield
¨

∂D

F · n dS = 3π + 12π + 8π = 23π

Remark. For the curious, integrating in cylindrical coordinates results in
¨

∂D

F · n dS = 96

ˆ 2π

0

1

1 + 3 cos2 θ
dθ + 32

ˆ 2π

0

1

(1 + 3 cos2 θ)2
dθ

and the last integral is non-trivial.
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Example 4.

Find the net outward flux of the field

F =
x i + y j + z k

ρ3
, ρ =

√

x2 + y2 + z2

across the boundary of the region D : 0 < a2 ≤ ρ2 ≤ b2. Note: This is

another “thick sphere” computation, as we saw in Example 2.

Now by the Divergence Theorem, we can calculate the flux by

evaluating the integral
˝

D ∇ · F dV . Observe that

∂ρ

∂x
=

x
√

x2 + y2 + z2
=

x

ρ

It follows that

∂(x/ρ3)

∂x
=

ρ3 − 3xρ2(x/ρ)

ρ6

=
ρ

ρ

ρ2 − 3x2

ρ5
=

−2x2 + y2 + z2

ρ5

Similarly,

∂(y/ρ3)

∂y
=

−2y2 + x2 + z2

ρ5
and

∂(z/ρ3)

∂z
=

−2z2 + x2 + y2

ρ5

It follows that

∇ · F = 0(2)

Hence
˚

D

∇ · F dV = 0
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So the flux leaving the region via the inner surface is the negative of

the flux leaving the region through the outer surface. It seems

worthwhile to compute the flux across one the surfaces directly (e.g.,

see Example 16.7.6). Notice that the outward normal is

n =
x i + y j + z k
√

x2 + y2 + z2
=

x i + y j + z k

b

and

F · n =
x2 + y2 + z2

b4
=

1

b2

It follows that the flux across the outer surface Sb is
¨

Sb

F · n dS =

¨

Sb

1

b2
dS =

1

b2

¨

Sb

dS

=
1

b2
× surface area of Sb

=
1

b2
4πb2 = 4π

So the outward flux across any sphere centered at the origin is 4π. In

fact, the above result is not limited spheres but applies to any smooth

bounded region that includes the origin.

We explore this result below.

Remark. According to (2) and the Divergence Theorem, the flux across

Sb should be 0. Can you explain the nonzero result above?
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Gauss’s Law

Suppose that a point charge* q (measured in coulombs) is placed at

the origin. In electromagnetic theory, such a point charge would create

an electric field emanating from the origin whose vector equation is

given by

(3) E(x, y, z) =
1

4πǫ0

q

r2
r

|r| =
q

4πǫ0

x i + y j + z k

ρ3

in units of Newtons per coulomb (or volts per meter). Here ǫ0 is a

physical constant (called the permittivity of free space) and r is the

position vector of a point in space. Using the notation from the last

example, we can rewrite (3) as

E =
q

4πǫ0
F

It follows by Example 4 that the flux across any reasonable surface S

that includes the origin is q/ǫ0. To see this we consider a sphere Sb of

radius b centered at the origin that contains S. Then
¨

Sb

E · n dS =
q

4πǫ0

¨

Sb

F · n dS =
q

4πǫ0
× 4π =

q

ǫ0

Notice that

(4) ∇ ·E = ∇ · q

4πǫ0
F =

q

4πǫ0
∇ · F = 0

* - For example, the charge from a single proton is exactly 1.602176634× 10−19 coulombs.
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Now let D be the region between S and Sb. If the Divergence Theorem

applies over the region D, then, because of (4), the net outward flux of

E across the boundary of D must be zero. But the outward flux across

Sb is q/ǫ0. It follows that the outward flux across S must be the same.

This is Gauss’s Law:

(5)

¨

S

E · n dS =
q

ǫ0
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S∆S

∆tv h = ∆tv · nn

Figure 1: Fluid flow across surface S.

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed surface S. Let

v(x, y, z) be the velocity field of a fluid flowing smoothly through D and

δ = δ(t, x, y, z) be the density of the fluid at (x, y, z) at time t. Consider

the vector field F = δv and suppose all functions in question have

continuous first partial derivatives.

We first observe that the surface integral
˜

S F · n dS is the rate at

which mass leaves the region D across S. To see this, consider a

small patch ∆S on the surface S (See Figure 1). If ∆t is small, the

volume ∆V of fluid that crosses the patch is approximately equal to the

volume of a cylinder with base area ∆S times the height h = (∆tv) · n.

Notice that

∆V ≈ v · n∆S∆t

And the mass of this volume of fluid is

∆m ≈ δv · n∆S∆t
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So the rate at which mass is leaving the region D across the patch ∆S

is roughly

∆m

∆t
≈ δv · n∆S

It follows that
∑

∆m

∆t
≈
∑

δv · n∆S

is an estimate of the average rate at which mass flows across S.

Letting ∆t → 0 and ∆S → 0 produces

dm

dt
=

¨

S

δv · n dS =

¨

S

F · n dS

Now let B be a ball (solid sphere) in D centered at some point Q. Then

the average value of ∇ · F is given by

1

Vol(B)

˚

B

∇ · F dV

By the assumptions on the vector field, ∇ · F is continuous. Hence,

there is a point P ∈ B such that

(∇ · F)P =
1

Vol(B)

˚

B

∇ · F dV =
1

Vol(B)

¨

∂B

F · n dS

=
rate at which mass leaves B across its boundary ∂B

volume of B

The last expression gives the decrease in mass per unit volume.
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Holding Q fixed and letting the radius of the ball go to zero yields

(∇ · F)Q = −
(
∂δ

∂t

)

Q

And since Q was arbitrary, we have

∇ · F = −∂δ

∂t

The last equation, called the continuity equation of hydrodynamics, is

often written as

∇ · F +
∂δ

∂t
= 0(6)

It says that the divergence of F at a point Q is the rate at which the

density of the fluid is decreasing at Q. So the Divergence Theorem
¨

S

F · n dS =

˚

D

∇ · F dV

says that the net decrease in fluid density in D is accounted for by

mass transported across the boundary of D. In other words, the

theorem is about conservation of mass.

Remark. There are numerous continuity equations similar to

Equation (6) throughout physics.
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1

1

R

r

z

Figure 2: Region R

Example 5. Consider the region R bounded by the space curve

defined below (see Fig. 2).

(7) z = sin 2t and r = sin t, 0 ≤ t ≤ π

Find the volume of the solid E generated by rotating the region R about

the z-axis (see Fig. 3).

At first glance, this looks like a second semester calculus problem

since the E is a volume of rotation. However, we may wish to find an

easier way since the calculations appears to be nontrivial.

So let S = ∂E. Then by (7), S can be defined by the vector equation

r(φ, θ) = sinφ cos θ i + sinφ sin θ j + sin 2φk, (φ, θ) ∈ D

where D = {(φ, θ) : 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}.

Now

rφ × rθ = −2 cos 2φ sinφ cot θ i− 2 cos 2φ sinφ sin θ j + sinφ cosφk
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x

y

z

Figure 3: Volume of Rotation E

Now we need to choose a vector field F so that ∇ · F = 1. Let’s try

F = z k. So by the Divergence Theorem
˚

E

dV =

˚

E

∇ · z k dV

=

¨

S

z k · n dS

=

¨

D

z k · rφ × rθ dA

=

ˆ 2π

0

ˆ π

0

sin 2φ sinφ cosφ dφ dθ

= π

ˆ π

0

sin2 2φ dφ

=
π

2

ˆ 2π

0

sin2 u du

=
π2

2

It is a worthwhile to rework this example by choosing another vector

field G so that ∇ ·G = 1. For example, one might try G = y j or

G = 2x i− z k.
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x

y

z

S1

Figure 3: Parabolic Cap

Example 6. Let F = xy i+ yz j+ xz k. Find the outward flux (away from

the origin) across the parabolic cap S1 defined by

z = 10− x2 − y2, z ≥ 1. That is, evaluate the flux integral
˜

S1
F · n dS.

Notice that the Divergence Theorem does not apply since S1 is not a

closed region in space. So let S = S1 ∪ S2 where S2 : x
2 + y2 ≤ 9, z = 1.

Then S encloses a region E in space. So by the Divergence Theorem

¨

S

F · n dS =

˚

E

∇ · F dV

=

˚

E

(y + z + x) dV

=

ˆ 2π

0

ˆ 3

0

ˆ 10−r2

1

(r cos θ + r sin θ + z)r dz dr dθ

=

ˆ 2π

0

ˆ 3

0

(9− r2)r3(cos θ + sin θ) dr dθ

+
1

2

ˆ 2π

0

ˆ 3

0

((10− r2)2 − 1)r dr dθ
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The first integral is zero and hence
¨

S

F · n dS =
1

2

ˆ 2π

0

ˆ 3

0

((10− r2)2 − 1)r dr dθ

= π

ˆ 3

0

((10− r2)2 − 1)r dr

...

= 162π

Now observe that

162π =

¨

S

F · n dS =

¨

S1

F · n dS +

¨

S2

F · n dS

and we are done since the last integral is zero. Compare with the

Green’s Theorem handout.

Exercise: Verify the missing calculations in Example 6. In particular,

evaluate
˜

S2
F · n dS. Also, evaluate the flux integral

˜

S1
F · n dS

directly.

https://users.math.msu.edu/users/hensh/courses/234/fall2022/handouts/GreensTh-NoLoop.pdf
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Example 7. Find the outward flux of F across the boundary of the

region D if

F = y i + xy j− z k

and D is the region inside the solid cylinder x2 + y2 ≤ 4 between the

plane z = 0 and the paraboloid z = x2 + y2.

The boundary of D consists of the 3 surfaces (defined below). Instead

of evaluating 3 surface integrals, let’s invoke the Divergence Theorem.

So
¨

∂D

F · n dS =

˚

D

∇ · F dV

=

˚

D

(0 + x− 1) dV

=

ˆ 2

−2

ˆ

√
4−x2

−
√
4−x2

ˆ x2+y2

0

(x− 1) dz dy dx

=

ˆ 2π

0

ˆ 2

0

ˆ r2

0

(r cos θ − 1)r dz dr dθ

=

ˆ 2π

0

ˆ 2

0

(r cos θ − 1)r3 dr dθ

=

ˆ 2π

0

(
32 cos θ

5
− 16

4

)

dθ

= −8π
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Let’s evaluate the surface integrals directly. As we mentioned above,

∂D = S1 ∪ S2 ∪ S3 where

S1 : x
2 + y2 ≤ 4, z = 0

S2 : x
2 + y2 = 4, 0 ≤ z ≤ 4

S3 : z = x2 + y2, 0 ≤ z ≤ 4

It is an easy exercise to see that
˜

S1
F · n dS = 0.

Notice that S2 (the cylinder) can be parameterized by the vector

equation

r(s, t) = 2 cos t i + 2 sin t j + sk, (s, t) ∈ R

where R = {(s, t) : 0 ≤ t ≤ 2π, 0 ≤ s ≤ 4}.

Now

rs = k

rt = −2 sin t i + 2 cos t j

and

rs × rt = −2 cos t i− 2 sin t j
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Observe that n = −(rs × rt). Thus
¨

S2

F · n dS = −
ˆ 2π

0

ˆ 4

0

F(r(s, t)) · (rs × rt) ds dt

= −
ˆ 2π

0

ˆ 4

0

(2 sin t i + (2 cos t)(2 sin t) j− sk)

· (−2 cos t i− 2 sin t j) ds dt

= 4

ˆ 2π

0

(
4 sin t cos t + 8 sin2 t cos t

)
dt

= 4

ˆ 2π

0

(
4 sin t + 8 sin2 t

)
cos t dt

And it is now easy to see that this last integral is zero.

Finally, we compute the flux across the surface S3 (the paraboloid).

The surface can be parameterized by the vector equation

r(s, t) = s cos t i + s sin t j + s2 k, (s, t) ∈ R

where R = {(s, t) : 0 ≤ t ≤ 2π, 0 ≤ s ≤ 2}.

So

rs = cos t i + sin t j + 2sk

rt = −s sin t i + s cos t j

and

rs × rt = −2s2 cos t i− 2s2 sin t j + sk
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We also have

F(r(s, t)) = s sin t i + s2 cos t sin t j− s2 k

So that

F(r(s, t)) · (rs × rt) = −s3 − 2s3 sin t cos t− 2s4 sin2 t cos t

It follows that
¨

S3

F · n dS =

ˆ 2π

0

ˆ 2

0

(−s3 − 2s3 sin t cos t− 2s4 sin2 t cos t) ds dt

=

ˆ 2π

0

ˆ 2

0

−s3 ds dt− 2

ˆ 2π

0

ˆ 2

0

s3 sin t cos t ds dt

− 2

ˆ 2π

0

ˆ 2

0

s4 sin2 t cos t ds dt

= −2π

ˆ 2

0

s3 ds + 0 + 0

= −8π

Finally,
¨

∂D

F · n dS =

¨

S3

F · n dS +

¨

S3

F · n dS +

¨

S3

F · n dS

= −8π + 0 + 0

as expected.



16.9 24

Example 8. Find the outward flux of F across the boundary of the

region D if

F = 2xz i + xy j− z2 k

and D is the wedge cut from the first octant by the plane y + z = 4 and

the elliptical cylinder 4x2 + y2 = 16.

The surface integrals do not look particularly inviting. So once again,

we try the Divergence Theorem. Now

∇ · F = 2z + x− 2z = x

Thus
¨

∂D

F · n dS =

˚

D

∇ · F dV

=

ˆ 2

0

ˆ

√
16−4x2

0

ˆ 4−y

0

x dz dy dx

=

ˆ 2

0

ˆ

√
16−4x2

0

x(4− y) dy dx

= 4

ˆ 2

0

x
√

16− 4x2 dx− 1

2

ˆ 2

0

x(16− 4x2) dx

=
1

2

ˆ 16

0

√
u du− 1

2

ˆ 2

0

(16x− 4x3) dx

=
64

3
− 1

2
(8x2 − x4)

2

0

=
64

3
− 24

3
=

40

3
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Let’s try computing the flux directly. The boundary of D is made up of 5

distinct surfaces, which we will define along the way.

Let S1 be the intersection of ∂D and the plane y = 0. Notice that the

outward normal is n = − j and since F · n = −xy = 0 (for y = 0), we see

that
˜

S1
F · n dS = 0.

The situation is similar for the intersection of ∂D with the planes x = 0

and z = 0 (S2 and S3, resp.). That is,
¨

S2

F · n dS =

¨

S3

F · n dS = 0

Now let S4 be the intersection of ∂D with the plane y + z = 4. Then

S4 can be parameterized by the vector equation

r(x, y) = x i + y j + (4− y)k, (x, y) ∈ R

where R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤
√
16− 4x2}. It follows that

rx = i and ry = j− k

So that

rx × ry = j + k

as expected. We also have

F · (rx × ry) =
(
2xz i + xy j− z2 k

)
· ( j + k)

= xy − z2 = xy − (4− y)2
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It follows that
¨

S4

F · n dS =

¨

R

(
xy − (4− y)2

)
dA

=

ˆ 2

0

ˆ

√
16−4x2

0

(
xy − (4− y)2

)
dy dx

= ...

=
280

3
− 40π

Finally, let S5 be the intersection with ∂D and the cylinder 4x2 + y2 = 16.

Then S5 can be parameterized by the vector equation

r(y, z) =

√

16− y2

2
i + y j + z k, (y, z) ∈ R

where R = {(y, z) : 0 ≤ y ≤ 4, 0 ≤ z ≤ 4− y}.

It follows that

ry =
−y

2
√

16− y2
i + j

rz = k

and

ry × rz = i +
y

2
√

16− y2
j
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Now

F · (ry × rz) =
(
2xz i + xy j− z2 k

)
·
(

i +
y

2
√

16− y2
j

)

= 2xz +
xy2

2
√

16− y2

= z
√

16− y2 +
y2

4

It follows that
¨

S5

F · n dS =

¨

R

(

z
√

16− y2 +
y2

4

)

dA

=

ˆ 4

0

ˆ 4−y

0

(

z
√

16− y2 +
y2

4

)

dz dy

= ...

= 40(π − 2)

Finally,
¨

∂D

F · n dS =

¨

S1

F · n dS + · · · +
¨

S5

F · n dS

= 0 + 0 + 0 +

(
280

3
− 40π

)

+ 40(π − 2)

=
40

3

as we saw above!
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Integral Theorems, Flux and Flow - Summary

As we saw earlier, we can imagine the del operator defined in this

chapter as also being defined on two-dimensional vector fields by

writing

F = M i +N j = M i +N j + 0k

whenever it is appropriate.

Now using the “del” notation we can rewrite all the integral theorems

using a uniform notation.
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We recall a few important definitions.

Definition. Circulation Density at a Point

The circulation density or curl of a vector field F is

curlF = ∇× F

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k

∂

∂x

∂

∂y

∂

∂z

M N P

∣
∣
∣
∣
∣
∣
∣
∣
∣

As we saw earlier, this reduces to the usual k-component of curl

whenever P = 0 and F = F
z=0

.

Definition. Flux Density at a Point

The flux density or divergence of a vector field F is

divF = ∇ · F

Once again, this reduces to the usual two-dimensional version

whenever P = 0.
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For circulation around a smooth closed curve C we have

Green’s Theorem (Tangential Form):
ffi

C

F · dr =
ffi

C

M dx +N dy

=

¨

R

(
∂N

∂x
− ∂M

∂y

)

dA

=

¨

R

∇× F · k dA

Stokes’ Theorem:
ffi

C

F · dr =
¨

S

∇× F · n dS

In the first case, C is the boundary of the plane region R. In the

second, C is the boundary of the oriented surface S.
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For the flux around the smooth closed curve C of an orientable surface

S we have

Green’s Theorem (Normal Form):
ffi

C

F · n ds =

ffi

C

M dy −N dx

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

dA

=

¨

R

∇ · F dA

Divergence Theorem:
¨

S

F · n dS =

˚

D

∇ · F dV

Once again C is the boundary of the plane region R and D is the

region enclosed by the oriented surface S.
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Some finishing touches.

Let f be a differentiable function on I = [a, b] and let F = f (x) i

throughout I. Then i is the unit outward normal at the boundary point b

and −i is the unit outward normal at a.

Thus

f (b)− f (a) = (f (b) i) · i + (f (a) i) · (−i)

= F(b) · n + F(a) · n
︸ ︷︷ ︸

total outward flux of F

across the boundary of [a, b]

So by the Fundamental Theorem of Calculus

F(b) · n + F(a) · n = f (b)− f (a)

=

ˆ b

a

f ′(x) dx

=

ˆ

[a,b]

∂f

∂x
dx

=

ˆ

[a,b]

∇ · F dx

In other words, the Fundamental Theorem of Calculus, the normal form

of Green’s Theorem, and the Divergence Theorem say that integral of

the differential operator ∇· operating on a field F over some region R

(in one, two or three dimensions) is equal to the sum of the (unit)

normal field components of F over the boundary of R.


