
Math 320 Exam 1 Summer 2015

1. (5 + 10 points) Let A be a nonempty set of real numbers.

(a) State the definition of sup A.

Solution:

Suppose that A is bounded (above). Then γ = sup A provided:

(i*) γ > a for all a ∈ A. That is, γ is an upper bound of A.

(ii*) If β is any upper bound of A, then γ ≤ β.

If A is not bounded above, then we say that sup A = ∞.

(b) Suppose that α is a real number that satisfies the following properties:

(i) α is an upper bound of A.

(ii) For each ε > 0, there exists an a ∈ A such that

α − ε < a ≤ α

Show that α = sup A. (Note: In class we used this alternate characterization to prove several
important results.)

Solution:

Since (i) and (i*) are the same we need only show (ii) implies (ii*). So let β be any upper
bound of A. If β is less than α, then we let ε = α − β > 0. So by (LHS of) (ii), there
exists an a ∈ A such that

a > α − ε = α − (α − β) = β

so that β is not an upper bound of A (see the sketch).

b bb

ε = α − β

β αa
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2. (15 points) Suppose that A and B are bounded nonempty subsets of real numbers with
sup A < sup B. Show that there is an element b ∈ B that is an upper bound for A.

Solution:

Since there is separation between the two supremums, we should be able to find an
element in b0 ∈ B that is arbitrarily close to sup B and also greater than sup A. We give
three (similar) proofs. In each case, we discover an element in B that is greater than α
(the least upper bound of A).

Method 1: Let α = sup A, β = sup B, and ε = β−α
2

. Observe that, by the Axiom of
Completeness, α and β are finite and that ε > 0. Now this choice of ε guarantees that

α < β − ε

Also, according to the alternative characterization of the supremum, there is an element
b0 ∈ B such that

β − ε < b0 ≤ β

Together these imply that

α < b0

In other words, b0 is an upper bound for A.

Method 2: Using the same notation as above. Let µ be the midpoint between α and β.
That is, let

µ =
α + β

2

(Note: The following argument will work with any µ ∈ (α, β). The midpoint is just a
convenient choice.)

Now α < µ < β and so µ is an upper bound of A. However, µ may not be an element of
B. Fortunately, there is b0 ∈ B with µ < b0 ≤ β. For if no such b0 exists, then µ is an
upper bound of B that is less than β, which is impossible. The result follows.

Method 3: This method is motivated by exercise 2.11.11 (or 2.10.7). Let α and β be as
defined above. So according to 2.11.11, there exists a sequence {bn} ⊂ B such that
bn → β as n → ∞. Let ε = β − α. There exists an N ∈ N such that |bN − β| < ε = β − α.
It follows that

α − β = −ε < bN − β < ε = β − α

Now the left inequality implies that bN > α, as desired.
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3. (15 points) Let a1 = 1, and for each n ∈ N let

(1) an+1 =
2an + 5

4

(a) Show that an is rational for each n ∈ N.

Solution:

We proceed by induction on n. Clearly a1 = 1 is a rational number. Now suppose that
an = p/q, p, q ∈ Z, q 6= 0. Then

an+1 =
2an + 5

4
=

2p/q + 5

4
=

2p + 5q

4q
∈ Q

since 2p + 5q, 4q ∈ Z.

(b) The sequence {an} is clearly bounded below by 0. Show that it is also bounded above.
(Note: Try showing an ≤ 100, for all n ∈ N.)

Solution:

We claim that an is bounded above, by 100. We proceed by induction on n.

P (1) : a1 = 1 ≤ 100 is obvious.

P (n) : Now suppose that an ≤ 100 (the induction hypothesis). Then

2an ≤ 200

=⇒ 2an + 5 ≤ 205

=⇒ an+1 =
2an + 5

4
≤ 205

4
< 100

as desired. Observe that the exact same argument will also show that the sequence
is bounded above by 5/2 (see below).
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(c) Carefully prove that the sequence {an} converges, and find its limit. Be sure to specify any

theorems that you use.

Solution:

i. Suppose first that the sequence converges, say limn→∞ an = s. Then by (1) we have

s = lim
n→∞

an+1 = lim
n→∞

2an + 5

4

=
2s + 5

4
(justified by the Limit Laws)

Solving for s we obtain

s = 5/2

ii. We claim that {an} is increasing. For n ≥ 1, we have

an+1 − an =
2an + 5

4
− 4an

4

=
5 − an

4
> 0

since an < 5/2 for all n ∈ N.

Hence, the sequence converges by the Monotone Convergence Theorem, and the first step
has been justified.
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4. (15 points) Use an ε-N argument to prove

lim
n→∞

3n2 + 6

n2 − 3n
= 3

Solution:

We omit the “scrap work”. Let ε > 0 and let N = 15/ε + 3. We remark that with this
choice, N > 3. Now

n > N >
15

ε
+ 3

=⇒ ε >
15

n − 3
=

15n

n(n − 3)

≥ 6 + 9n

n2 − 3n
=

∣
∣
∣
∣

6 + 9n

n2 − 3n

∣
∣
∣
∣

(since n > 3)

=

∣
∣
∣
∣

3n2 + 6

n2 − 3n
− 3

∣
∣
∣
∣

In other words
∣
∣
∣
∣

3n2 + 6

n2 − 3n
− 3

∣
∣
∣
∣

< ε

as desired.

5. (15 points) Let b > 1.

(a) Prove that bn+1 > bn for all n ∈ N.

Solution:

Claim that b > 0 =⇒ bn > 0 for all n ∈ N. If the claim is true, then

bn · b > bn · 1

by Theorem 3.2. To prove the claim, we proceed by induction. Clearly b1 > 0. Now
suppose that bn > 0. Then by Theorem 3.2, b · bn = bn+1 > 0.
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(b) Prove that bn − 1 ≥ n(b − 1) for all n ∈ N.

Solution:

We give 2 proofs.

Method 1: We proceed by induction on n. For n = 1 we have

b1 − 1 = 1(b − 1) X

Now suppose that bn − 1 ≥ n(b − 1) holds. Notice that by part (a), bn > 1 hence
bn(b − 1) > 1(b − 1). Thus

bn+1 − 1 = (bn+1 − bn) + (bn − 1) (arithmetic)

≥ (bn+1 − bn) + n(b − 1) (by the induction hypothesis)

= bn(b − 1) + n(b − 1) (arithmetic)

> (b − 1) + n(b − 1) (see comments above)

= (n + 1)(b − 1) (arithmetic)

as desired.

Method 2: By part (a), bk > 1 for all k ∈ N. We motivate this approach by observing
that we have equality for n = 1. For n = 2, we have

b2 − 1 = (b + 1)(b − 1) > (1 + 1)(b − 1) (since b > 1)

That’s encouraging. Now recall that bn − 1 has a well-known factorization. Thus

bn − 1 = (bn−1 + bn−2 + · · · + b + 1)
︸ ︷︷ ︸

n terms

(b − 1)

> (1 + 1 + · · · + 1 + 1)
︸ ︷︷ ︸

n terms

(b − 1), (by part (a))

= n(b − 1)

as desired.
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(c) Suppose that 0 < a < 1. Prove that a <
√

a < 1. (Note: By definition,
√

a > 0.)

Solution:

We claim that if 0 < a < 1 then
√

a < 1. If the claim is true then the result follows by
Theorem 3.2 since

0 <
√

a =⇒ a =
√

a ·
√

a <
√

a · 1 < 1

Now suppose the claim is false, i.e., suppose that
√

a ≥ 1. Then by part (a),

1 ≤
√

a ≤
(√

a
)2

= a

contrary to the given conditions on a.

6. (10 points) Suppose that {an} and {bn} are sequences and M > 0. If limn→∞ an = 0 and
−M ≤ bn ≤ M for all n ∈ N, use an ε-N argument to prove

lim
n→∞

anbn = 0

Solution:

From the Limit theorems, we see that

lim
n→∞

±Man = ±M lim
n→∞

an = 0

Now since
−M |an| ≤ bn|an| ≤ M |an|, ∀n ∈ N

The desired result follows from the Squeeze Law (see Exercise 2.3.3 in the text).
However, we were asked to prove this result using an ε-N argument. Nevertheless, the
Squeeze Law provides some intuition.

Now let ε > 0. Since limn→∞ an = 0, we can choose an N ∈ N such that n ≥ N implies
|an − 0| < ε/M . It follows that

|anbn − 0| = |anbn| = |an| |bn| ≤ |an|M ≤ ε

M
M

provided that n ≥ N .
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7. (15 points) Let A and B be bounded sets and define A + B = {a + b : a ∈ A and b ∈ B}. Show that
inf A + inf B = inf(A + B).

Hint: Let α = inf A and β = inf B. First show that α + β is a lower bound of the set A + B.

Solution:

Following the hint, we let α = inf A and β = inf B. For a ∈ A and b ∈ B, we have a ≥ α
and b ≥ β. It follows that a + b ≥ α + β for all a ∈ A and b ∈ B. Hence, α + β is an lower
bound for the set A + B. It follows by the AoC that t = inf(A + B) exists and hence

(2) t ≥ α + β

We provide three proofs that we actually have equality.

Method 1 (Direct): By the remarks above, we see that item (i) (see Problem 1) holds
since α + β is a lower bound. Now let ε > 0. Since α = inf A, there exists an a0 ∈ A such
that α ≤ a0 < α + ε. Similarly, there is a b0 ∈ B such that β ≤ b0 < β + ε. Adding these
inequalities together, we have shown that for an arbitrary ε > 0, we can find an element
t0 = a0 + b0 ∈ A + B such that

α + β ≤ a0 + b0 < α + β + 2ε.

which is item (ii).

Method 2 (Contrapositive): Suppose we have a strict inequality in (2). That is,
suppose t > α + β and set ε = t − (α + β) > 0. So by the alternate characterization of the
infimum, there is a0 ∈ A and b0 ∈ B such that

α ≤ a0 < α + ε/2

β ≤ b0 < β + ε/2

Adding these together, we obtain

a0 + b0 < α + β + ε

= α + β + (t − α − β)

= t

So t is not an lower bound of A + B contrary to our definition. The result follows.
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Method 3: Choose an arbitrary but fixed element b0 ∈ B. Since t is the infimum of A + B, we
know that a + b0 ≥ t for all a ∈ A. In particular, a ≥ t − b0 for all a ∈ A. Hence t − b0 is an lower
bound of A.

Since α is the greatest lower bound of A, we see that α ≥ t − b0. Rearranging this last inequality we
see that b0 ≥ t − α. Since b0 was arbitrary, we conclude that b ≥ t − α for all b ∈ B and hence, t − α
is a lower bound for B. It follows that β ≥ t − α. In other words,

(3) t ≤ α + β

Together (2) and (3) imply the result.

8. (Bonus - 10 points) Prove that
lim

n→∞

√
n + 1 −

√
n = 0

Solution:

We omit the “scrap work”. Let ε > 0 and choose N =
1

ε2
. Now for any n > N we have

∣
∣
√

n + 1 −
√

n
∣
∣ =

√
n + 1 −

√
n

=

√
n + 1 − √

n

1
·

√
n + 1 +

√
n√

n + 1 +
√

n

=
n + 1 − n√
n + 1 +

√
n

=
1√

n + 1 +
√

n

<
1

2
√

n
<

1√
n

< ε

as desired.

y =
√

x + 1 − √
x

y =
1√
x
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