- 1. (5 + 10 points) Let A be a nonempty set of real numbers.
 - (a) State the definition of $\sup A$.

Solution:

Suppose that A is bounded (above). Then $\gamma = \sup A$ provided:

(i*) $\gamma > a$ for all $a \in A$. That is, γ is an upper bound of A.

(ii*) If β is any upper bound of A, then $\gamma \leq \beta$.

If A is not bounded above, then we say that $\sup A = \infty$.

- (b) Suppose that α is a real number that satisfies the following properties:
 - (i) α is an upper bound of A.
 - (ii) For each $\varepsilon > 0$, there exists an $a \in A$ such that

$$\alpha - \varepsilon < a \le \alpha$$

Show that $\alpha = \sup A$. (*Note:* In class we used this *alternate* characterization to prove several important results.)

Solution:

Since (i) and (i^{*}) are the same we need only show (ii) implies (ii^{*}). So let β be any upper bound of A. If β is less than α , then we let $\varepsilon = \alpha - \beta > 0$. So by (LHS of) (ii), there exists an $a \in A$ such that

$$a > \alpha - \varepsilon = \alpha - (\alpha - \beta) = \beta$$

so that β is not an upper bound of A (see the sketch).

Exam 1

 $\sup A < \sup B$. Show that there is an element $b \in B$ that is an upper bound for A.

Solution:

Since there is separation between the two supremums, we should be able to find an element in $b_0 \in B$ that is arbitrarily close to $\sup B$ and also greater than $\sup A$. We give three (similar) proofs. In each case, we discover an element in B that is greater than α (the least upper bound of A).

Method 1: Let $\alpha = \sup A$, $\beta = \sup B$, and $\varepsilon = \frac{\beta - \alpha}{2}$. Observe that, by the Axiom of Completeness, α and β are finite and that $\varepsilon > 0$. Now this choice of ε guarantees that

$$\alpha < \beta - \varepsilon$$

Also, according to the alternative characterization of the supremum, there is an element $b_0 \in B$ such that

$$\beta - \varepsilon < b_0 \leq \beta$$

Together these imply that

 $\alpha < b_0$

In other words, b_0 is an upper bound for A.

Method 2: Using the same notation as above. Let μ be the midpoint between α and β . That is, let

$$\mu = \frac{\alpha + \beta}{2}$$

(*Note:* The following argument will work with any $\mu \in (\alpha, \beta)$. The midpoint is just a convenient choice.)

Now $\alpha < \mu < \beta$ and so μ is an upper bound of A. However, μ may not be an element of B. Fortunately, there is $b_0 \in B$ with $\mu < b_0 \leq \beta$. For if no such b_0 exists, then μ is an upper bound of B that is less than β , which is impossible. The result follows.

Method 3: This method is motivated by exercise 2.11.11 (or 2.10.7). Let α and β be as defined above. So according to 2.11.11, there exists a sequence $\{b_n\} \subset B$ such that $b_n \to \beta$ as $n \to \infty$. Let $\varepsilon = \beta - \alpha$. There exists an $N \in \mathbb{N}$ such that $|b_N - \beta| < \varepsilon = \beta - \alpha$. It follows that

$$\alpha - \beta = -\varepsilon < b_N - \beta < \varepsilon = \beta - \alpha$$

Now the left inequality implies that $b_N > \alpha$, as desired.

3. (15 points) Let $a_1 = 1$, and for each $n \in \mathbb{N}$ let

(1)
$$a_{n+1} = \frac{2a_n + 5}{4}$$

(a) Show that a_n is rational for each $n \in \mathbb{N}$.

Solution:

We proceed by induction on n. Clearly $a_1 = 1$ is a rational number. Now suppose that $a_n = p/q, \ p, q \in \mathbb{Z}, \ q \neq 0$. Then

$$a_{n+1} = \frac{2a_n + 5}{4} = \frac{2p/q + 5}{4} = \frac{2p + 5q}{4q} \in \mathbb{Q}$$

since $2p + 5q, 4q \in \mathbb{Z}$.

(b) The sequence $\{a_n\}$ is clearly bounded below by 0. Show that it is also bounded above. (*Note:* Try showing $a_n \leq 100$, for all $n \in \mathbb{N}$.)

Solution:

We claim that a_n is bounded above, by 100. We proceed by induction on n.

 $P(1): a_1 = 1 \le 100$ is obvious.

P(n): Now suppose that $a_n \leq 100$ (the induction hypothesis). Then

$$2a_n \le 200$$
$$\implies 2a_n + 5 \le 205$$
$$\implies a_{n+1} = \frac{2a_n + 5}{4} \le \frac{205}{4} < 100$$

as desired. Observe that the exact same argument will also show that the sequence is bounded above by 5/2 (see below).

(c) Carefully prove that the sequence $\{a_n\}$ converges, and find its limit. Be sure to specify any theorems that you use.

Solution:

i. Suppose first that the sequence converges, say $\lim_{n\to\infty} a_n = s$. Then by (1) we have

$$s = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{2a_n + 5}{4}$$
$$= \frac{2s + 5}{4}$$
(justified by the Limit Laws)

Solving for s we obtain

$$s = 5/2$$

ii. We claim that $\{a_n\}$ is increasing. For $n \ge 1$, we have

$$a_{n+1} - a_n = \frac{2a_n + 5}{4} - \frac{4a_n}{4}$$
$$= \frac{5 - a_n}{4} > 0$$

since $a_n < 5/2$ for all $n \in \mathbb{N}$.

Hence, the sequence converges by the Monotone Convergence Theorem, and the first step has been justified.

4. (15 points) Use an ε -N argument to prove

$$\lim_{n \to \infty} \frac{3n^2 + 6}{n^2 - 3n} = 3$$

Solution:

We omit the "scrap work". Let $\varepsilon > 0$ and let $N = 15/\varepsilon + 3$. We remark that with this choice, N > 3. Now

$$n > N > \frac{15}{\varepsilon} + 3$$

$$\implies \varepsilon > \frac{15}{n-3} = \frac{15n}{n(n-3)}$$

$$\ge \frac{6+9n}{n^2 - 3n} = \left|\frac{6+9n}{n^2 - 3n}\right| \quad (\text{since } n > 3)$$

$$= \left|\frac{3n^2 + 6}{n^2 - 3n} - 3\right|$$

In other words

$$\left|\frac{3n^2+6}{n^2-3n}-3\right|<\varepsilon$$

as desired.

- 5. (15 points) Let b > 1.
 - (a) Prove that $b^{n+1} > b^n$ for all $n \in \mathbb{N}$.

Solution:

Claim that $b > 0 \implies b^n > 0$ for all $n \in \mathbb{N}$. If the claim is true, then

$$b^n \cdot b > b^n \cdot 1$$

by Theorem 3.2. To prove the claim, we proceed by induction. Clearly $b^1 > 0$. Now suppose that $b^n > 0$. Then by Theorem 3.2, $b \cdot b^n = b^{n+1} > 0$.

(b) Prove that $b^n - 1 \ge n(b-1)$ for all $n \in \mathbb{N}$.

Solution:

We give 2 proofs.

Method 1: We proceed by induction on n. For n = 1 we have

$$b^1 - 1 = 1(b - 1) \quad \checkmark$$

Now suppose that $b^n - 1 \ge n(b-1)$ holds. Notice that by part (a), $b^n > 1$ hence $b^n(b-1) > 1(b-1)$. Thus

$$b^{n+1} - 1 = (b^{n+1} - b^n) + (b^n - 1)$$
(arithmetic)

$$\geq (b^{n+1} - b^n) + n(b - 1)$$
(by the induction hypothesis)

$$= b^n(b - 1) + n(b - 1)$$
(arithmetic)

$$> (b - 1) + n(b - 1)$$
(see comments above)

$$= (n + 1)(b - 1)$$
(arithmetic)

as desired.

Method 2: By part (a), $b^k > 1$ for all $k \in \mathbb{N}$. We motivate this approach by observing that we have equality for n = 1. For n = 2, we have

$$b^2 - 1 = (b+1)(b-1) > (1+1)(b-1)$$
 (since $b > 1$)

That's encouraging. Now recall that $b^n - 1$ has a well-known factorization. Thus

$$b^{n} - 1 = \underbrace{(b^{n-1} + b^{n-2} + \dots + b + 1)}_{n \text{ terms}} (b-1)$$

>
$$\underbrace{(1 + 1 + \dots + 1 + 1)}_{n \text{ terms}} (b-1), \quad \text{(by part (a))}$$

= $n(b-1)$

as desired.

(c) Suppose that 0 < a < 1. Prove that $a < \sqrt{a} < 1$. (*Note:* By definition, $\sqrt{a} > 0$.)

Solution:

We claim that if 0 < a < 1 then $\sqrt{a} < 1$. If the claim is true then the result follows by Theorem 3.2 since

$$0 < \sqrt{a} \quad \Longrightarrow \quad a = \sqrt{a} \cdot \sqrt{a} < \sqrt{a} \cdot 1 < 1$$

Now suppose the claim is false, i.e., suppose that $\sqrt{a} \ge 1$. Then by part (a),

$$1 \le \sqrt{a} \le \left(\sqrt{a}\right)^2 = a$$

contrary to the given conditions on a.

6. (10 points) Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences and M > 0. If $\lim_{n\to\infty} a_n = 0$ and $-M \leq b_n \leq M$ for all $n \in \mathbb{N}$, use an ε -N argument to prove

$$\lim_{n \to \infty} a_n b_n = 0$$

Solution:

From the Limit theorems, we see that

$$\lim_{n \to \infty} \pm M a_n = \pm M \lim_{n \to \infty} a_n = 0$$

Now since

$$-M|a_n| \le b_n|a_n| \le M|a_n|, \quad \forall n \in \mathbb{N}$$

The desired result follows from the Squeeze Law (see Exercise 2.3.3 in the text). However, we were asked to prove this result using an ε -N argument. Nevertheless, the Squeeze Law provides some intuition.

Now let $\varepsilon > 0$. Since $\lim_{n\to\infty} a_n = 0$, we can choose an $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_n - 0| < \varepsilon/M$. It follows that

$$|a_n b_n - 0| = |a_n b_n| = |a_n| |b_n| \le |a_n| M \le \frac{\varepsilon}{M} M$$

7

provided that $n \geq N$.

7. (15 points) Let A and B be bounded sets and define $A + B = \{a + b : a \in A \text{ and } b \in B\}$. Show that $\inf A + \inf B = \inf(A + B)$.

HINT: Let $\alpha = \inf A$ and $\beta = \inf B$. First show that $\alpha + \beta$ is a lower bound of the set A + B.

Solution:

Following the hint, we let $\alpha = \inf A$ and $\beta = \inf B$. For $a \in A$ and $b \in B$, we have $a \ge \alpha$ and $b \ge \beta$. It follows that $a + b \ge \alpha + \beta$ for all $a \in A$ and $b \in B$. Hence, $\alpha + \beta$ is an lower bound for the set A + B. It follows by the AoC that $t = \inf(A + B)$ exists and hence

(2)
$$t \ge \alpha + \beta$$

We provide three proofs that we actually have equality.

Method 1 (Direct): By the remarks above, we see that item (i) (see Problem 1) holds since $\alpha + \beta$ is a lower bound. Now let $\varepsilon > 0$. Since $\alpha = \inf A$, there exists an $a_0 \in A$ such that $\alpha \leq a_0 < \alpha + \varepsilon$. Similarly, there is a $b_0 \in B$ such that $\beta \leq b_0 < \beta + \varepsilon$. Adding these inequalities together, we have shown that for an arbitrary $\varepsilon > 0$, we can find an element $t_0 = a_0 + b_0 \in A + B$ such that

$$\alpha + \beta \le a_0 + b_0 < \alpha + \beta + 2\varepsilon.$$

which is item (ii).

Method 2 (Contrapositive): Suppose we have a strict inequality in (2). That is, suppose $t > \alpha + \beta$ and set $\varepsilon = t - (\alpha + \beta) > 0$. So by the alternate characterization of the infimum, there is $a_0 \in A$ and $b_0 \in B$ such that

$$\alpha \le a_0 < \alpha + \varepsilon/2$$
$$\beta \le b_0 < \beta + \varepsilon/2$$

Adding these together, we obtain

$$a_0 + b_0 < \alpha + \beta + \varepsilon$$

= $\alpha + \beta + (t - \alpha - \beta)$
= t

So t is not an lower bound of A + B contrary to our definition. The result follows.

Method 3: Choose an arbitrary but fixed element $b_0 \in B$. Since t is the infimum of A + B, we know that $a + b_0 \ge t$ for all $a \in A$. In particular, $a \ge t - b_0$ for all $a \in A$. Hence $t - b_0$ is an lower bound of A.

Since α is the greatest lower bound of A, we see that $\alpha \ge t - b_0$. Rearranging this last inequality we see that $b_0 \ge t - \alpha$. Since b_0 was arbitrary, we conclude that $b \ge t - \alpha$ for all $b \in B$ and hence, $t - \alpha$ is a lower bound for B. It follows that $\beta \ge t - \alpha$. In other words,

$$(3) t \le \alpha + \beta$$

Together (2) and (3) imply the result.

8. (Bonus - 10 points) Prove that

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = 0$$

Solution:

We omit the "scrap work". Let $\varepsilon > 0$ and choose $N = \frac{1}{\varepsilon^2}$. Now for any n > N we have

$$\begin{split} \sqrt{n+1} - \sqrt{n} &| = \sqrt{n+1} - \sqrt{n} \\ &= \frac{\sqrt{n+1} - \sqrt{n}}{1} \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \\ &= \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \\ &= \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ &< \frac{1}{2\sqrt{n}} < \frac{1}{\sqrt{n}} < \varepsilon \end{split}$$

as desired.

9