1. (10 points) Prove that for all $n \geq 2, \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}$. (Hint: To show the base case $(n=2$), you must show that $1+1 / \sqrt{2}>\sqrt{2}$. Recall that if a, b are positive, then $a>b$ iff $a^{2}>b^{2}$. So try showing that $a^{2}-b^{2}>0$ for the appropriate choice of a and b.)

Solution:

(C.f.- Bonus problem on Exam 1.) For the base case we follow the hint (twice).

$$
\left(1+\frac{1}{\sqrt{2}}\right)^{2}-(\sqrt{2})^{2}=\sqrt{2}-\frac{1}{2}>0
$$

since $\sqrt{2}>1$. Now suppose that $\sum_{j=1}^{n} \frac{1}{\sqrt{j}}>\sqrt{n}$. Then

$$
\begin{aligned}
\sum_{j=1}^{n+1} \frac{1}{\sqrt{j}} & =\sum_{j=1}^{n} \frac{1}{\sqrt{j}}+\frac{1}{\sqrt{n+1}} \\
& >\sqrt{n}+\frac{1}{\sqrt{n+1}} \\
& =\frac{\sqrt{n(n+1)}+1}{\sqrt{n+1}} \\
& >\frac{n+1}{\sqrt{n+1}}=\sqrt{n+1}
\end{aligned}
$$

2. (10 points) Use an $\varepsilon-N$ argument to prove

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}-n}{n^{2}+2}=5
$$

Solution:

We omit the "scrap work". Let $\varepsilon>0$ and let $N=2 / \varepsilon+10$. We remark that with this choice, $N>10$. Now

$$
\begin{aligned}
n & >N>\frac{2}{\varepsilon}+10>\frac{2}{\varepsilon} \\
\Longrightarrow \varepsilon & >\frac{2}{n}=\frac{2 n}{n^{2}} \\
& \geq \frac{2 n}{n^{2}+2}>\frac{n+10}{n^{2}+2} \quad(\text { since } n>10) \\
& =\left|\frac{n+10}{n^{2}+2}\right|=\left|\frac{-n-10}{n^{2}+2}\right| \\
& =\left|\frac{5 n^{2}-n}{n^{2}+2}-5\right|
\end{aligned}
$$

In other words, $n>2 / \varepsilon+10$ implies that

$$
\left|\frac{5 n^{2}-n}{n^{2}+2}-5\right|<\varepsilon
$$

as desired.
3. (10 points) Suppose that $\left\{a_{n}\right\}$ is a convergent sequence, say $\lim _{n \rightarrow \infty} a_{n}=a$. If $a_{n} \leq b$ for all $n \in \mathbb{N}$, prove the following:
(i) $a \leq b$
(ii) $a \leq \sup _{n} a_{n}$

Solution:

If the conclusion in (i) is false then $\frac{c-b}{2}>0$ and there exists an $N \in \mathbb{N}$ such that

$$
\frac{b-c}{2}<a_{N}-c<\text { Who cares! }
$$

Rearranging yields

$$
a_{N}>\frac{b+c}{2}>b
$$

contrary to our assumptions. Since this result holds for any upper bound b, (ii) follows immediately.

