Math 320

Additional Exam 1 Problems

Summer 2015
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(10 points) Prove that for all n > 2,

1
— > /n. (Hint: To show the base case (n = 2), you
n

must show that 1 + 1/\/5 > v/2. Recall that if a,b are positive, then a > b iff a> > b?. So try showing that

a? — b? > 0 for the appropriate choice of a and b.)

Solution:

(C.f.- Bonus problem on Exam 1.) For the base case we follow the hint (twice).
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. (10 points) Use an e-N argument to prove
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Solution:

We omit the “scrap work”. Let ¢ > 0 and let N = 2/¢ 4+ 10. We remark that with this choice,

N > 10. Now
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In other words, n > 2/¢ + 10 implies that
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as desired.

(since n > 10)
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3. (10 points) Suppose that {a,} is a convergent sequence, say lim, o a, = a. If a,, < b for all n € N, prove the
following:

(i) a<bd

Solution:

If the conclusion in (i) is false then %b > 0 and there exists an N € N such that

b—c

5 < an — ¢ < Who cares!

Rearranging yields

b
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anN >

contrary to our assumptions. Since this result holds for any upper bound b, (ii) follows
immediately.
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