Throughout this exam you may assume that $A \subseteq \mathbb{R}$ is never the empty set.

1. (10 points) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be bounded sequences of positive real numbers. If $\sum_{n=1}^{\infty} a_{n}$ converges show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

Solution:

We use the Comparison test. Since $\left\{b_{n}\right\}$ is bounded there is an $L>0$ such that for all $n \in \mathbb{N}$ we have $0<b_{n}<L$. Now $a_{n}>0$ implies

$$
\begin{equation*}
0<a_{n} b_{n}<L a_{n}, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

By the Algebraic Limit theorems,

$$
\begin{equation*}
\sum_{n=1}^{\infty} L a_{n}=L \sum_{n=1}^{\infty} a_{n}<\infty \tag{2}
\end{equation*}
$$

The result now follows by combining (1) and (2) and invoking the Comparison test.

Remark. Here's another approach. Note the similarities to the proof above. Let $\varepsilon>0$. Then by the Cauchy Criterion for series, there exists $N \in \mathbb{N}$ such that for all $n, m>N$ we have

$$
\left|\sum_{j=m}^{n} a_{j}\right|=\sum_{j=m}^{n} a_{j}<\frac{\varepsilon}{L}
$$

Thus

$$
\begin{aligned}
\left|\sum_{j=m}^{n} a_{j} b_{j}\right|=\sum_{j=m}^{n} a_{j} b_{j} & \leq L \sum_{j=m}^{n} a_{j} \\
& <L \frac{\varepsilon}{L}
\end{aligned}
$$

The desired result now follows by the Cauchy Criterion for series.
2. (15 points) Use an $\varepsilon-\delta$ argument to prove that $f(x)=5 x^{2}+1$ is continuous at 3 .

Solution:

We need to show that $\lim _{x \rightarrow-2} x^{2}=4$. There are several ways to prove this. For the standard approach, observe that if $|x-3|<1$, then $|x+3|$ is bounded above by 7 .

Now let $\varepsilon>0$ and choose $\delta=\min \{1, \varepsilon / 35\}$. Then $|x-3|<\delta$ implies

$$
\begin{aligned}
|f(x)-f(3)| & =\left|5 x^{2}-1-46\right| \\
& =5|x+3||x-3| \\
& <35|x-3|<35 \frac{\varepsilon}{35}
\end{aligned}
$$

as desired.
Here's another approach. First confirm that

$$
\begin{equation*}
5 x^{2}=5(x-3)^{2}+30(x-3)+45 \tag{3}
\end{equation*}
$$

and use this equality to obtain the result. Here are the details.
Let $\varepsilon>0$. Now choose $\delta=\min \{1, \varepsilon / 35\}$. Then $|x-3|<\delta$ implies

$$
\begin{aligned}
|f(x)-f(3)| & =\left|5 x^{2}+1-46\right| \\
& =\left|5(x-3)^{2}+30(x-3)\right| \\
& \leq 5|x-3|^{2}+30|x-3| \\
& <5|x-3|+30|x-3|, \quad \text { (since }|x-3|<1) \\
& <\varepsilon
\end{aligned}
$$

3. (15 points)
(a) Carefully state the definition of uniform continuity.

Definition: A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $x, y \in A$ with

$$
\begin{equation*}
|x-y|<\delta \quad \text { implies } \quad|f(x)-f(y)|<\varepsilon \tag{4}
\end{equation*}
$$

(b) Let $f: A \rightarrow \mathbb{R}$ be uniformly continuous. Show that if $\left\{x_{n}\right\} \subset A$ is a Cauchy sequence, then $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy sequence.

Solution:

Let $\varepsilon>0$ and choose $\delta>0$ so that (4) holds. Since $\left\{x_{n}\right\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $m, n \geq N$ implies $\left|x_{n}-x_{m}\right|<\delta$. Then by (4)

$$
\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon
$$

and hence, $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
4. (15 points) Find the interval and radius of convergence for the power series below. Don't forget to specify the behavior at the end points.

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{n} x^{n}
$$

Solution:

We try the (absolute) ratio test.

$$
\rho=\lim _{n \rightarrow \infty} \frac{n 2^{n+1}}{(n+1) 2^{n}} \frac{|x|^{n+1}}{|x|^{n}}=2|x| \lim _{n \rightarrow \infty} \frac{n}{n+1}=2|x|<^{?} 1
$$

It follows that $R=1 / 2$. The given series diverges at $x=1 / 2$ since the substitution $x \rightarrow 1 / 2$ yields the Harmonic series which is known to diverge (as was shown in class). On the other hand, the substitution $x \rightarrow-1 / 2$ yields the alternating Harmonic series, which is known to converge. It follows that the interval of convergence is $[-1 / 2,1 / 2)$.

Part II - Take Home

Student Name:

\qquad

1. (15 points) Let $I=[a, b]$ be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be a continuous function. If $K=\{x \in I: f(x) \geq 0\}$ is nonempty show that K is compact (i.e., closed and bounded).

Solution:

Since I is bounded and $K \subset I$, we need only show that K is closed and then apply Theorem 3.19.7 (from the lecture notes). Let c be a limit point of K and choose $\left\{x_{n}\right\} \subset K(\subset I)$ so that $x_{n} \rightarrow c$ as $n \rightarrow \infty$. Now we would like to say that $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$. However, that is only guaranteed if f is continuous at c.

Fortunately, we notice that c is also limit point of I since $K \subseteq I$. Hence $c \in I$ since I is closed. It follows that f is continuous at c. Now for each $n \in \mathbb{N}, x_{n} \in K$ implies that $f\left(x_{n}\right) \geq 0$. Hence

$$
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \geq 0
$$

by the Order Limit theorems from chapter 2. It follows that $c \in K$. Thus K is closed.
2. (10 points) Suppose that $f, g: A \rightarrow \mathbb{R}$ are continuous at $c \in A$ and let $h(x)=\max \{f(x), g(x)\}$. Use an $\varepsilon-\delta$ argument to show that h is continuous at c.
Hint: You may freely use the fact that $\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$ for all $a, b \in \mathbb{R}$.

Solution:

Following the hint, we see that

$$
h(x)=\frac{1}{2}(\underbrace{f(x)+g(x)}_{h_{1}(x)}+|\underbrace{f(x)-g(x)}_{h_{2}(x)}|)
$$

Now h_{1} and h_{2} are, respectively, the sum and difference of two continuous functions, hence both are continuous. Also, $\left|h_{2}(x)\right|$ is the composition of two continuous functions, hence it is continuous, and consequently, so is $h_{1}(x)+\left|h_{2}(x)\right|$. Finally, the product of two continuous functions ($1 / 2$ and $\left.h_{1}(x)+\left|h_{2}(x)\right|\right)$ is continuous, as desired.

However, the instructions explicitly asked for an $\varepsilon-\delta \operatorname{argument}$. So let $\varepsilon>0$ and choose $\delta_{1}, \delta_{2}>0$ so that $|x-c|<\delta_{1}$ implies $|f(x)-f(c)|<\varepsilon / 2$ and $|x-c|<\delta_{2}$ implies $|g(x)-g(c)|<\varepsilon / 2$. Now let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $|x-c|<\delta$ implies

$$
\begin{aligned}
2|h(x)-h(c)| & =|f(x)+g(x)+|f(x)-g(x)|-f(c)-g(c)-|f(c)-g(c)|| \\
& =|f(x)-f(c)+g(x)-g(c)+|f(x)-g(x)|-|f(c)-g(c)|| \\
& \leq|f(x)-f(c)|+|g(x)-g(c)|+||f(x)-g(x)|-|f(c)-g(c)|| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}+|(f(x)-g(x))-(f(c)-g(c))|^{*} \\
& \leq \varepsilon+|f(x)-f(c)|+|g(c)-g(x)|
\end{aligned}
$$

$$
\leq 2 \varepsilon
$$

* - Since $||a|-|b|| \leq|a-b|$

Now divide by 2 to obtain the desired result.
3. (10 points) Let $f(x)= \begin{cases}x, & \text { if } x \text { is rational } \\ 1-x, & \text { otherwise. }\end{cases}$ (Hint: A sketch may help.)

Show that f is continuous only at $x=1 / 2$.

Solution:

Let $\varepsilon>0$ and choose $\delta=\varepsilon$. Then if $|x-1 / 2|<\delta=\varepsilon$ we have two cases:

$$
\begin{aligned}
|f(x)-f(1 / 2)| & =|x-1 / 2|<\varepsilon \text { for } x \in \mathbb{Q} \\
|f(x)-f(1 / 2)|=|(1-x)-1 / 2|=|1 / 2-x| & =|x-1 / 2|<\varepsilon \text { otherwise. }
\end{aligned}
$$

It follows that f is continuous at $1 / 2$.
Now if $c \neq 1 / 2$, then we may choose $\varepsilon=\frac{|1-2 c|}{2}=|1 / 2-c|$.
If $c \in \mathbb{Q}$, then for every $\delta>0$ we can find an irrational number $x_{\mathrm{i}} \in(c-\delta, c+\delta)$ such that

$$
\begin{aligned}
\left|f\left(x_{\mathrm{i}}\right)-f(c)\right| & =\left|\left(1-x_{\mathrm{i}}\right)-c\right| \\
& >|1 / 2-c|=\varepsilon
\end{aligned}
$$

On the other hand, if $c \notin \mathbb{Q}$ then we can find a rational number $x_{\mathrm{r}} \in(c-\delta, c+\delta)$ such that

$$
\begin{aligned}
\left|f\left(x_{\mathrm{r}}\right)-f(c)\right| & =\left|x_{\mathrm{r}}-(1-c)\right| \\
& =\left|\left(1-x_{\mathrm{r}}\right)-c\right| \\
& >|1 / 2-c|=\varepsilon
\end{aligned}
$$

It follows that f is discontinuous at c.
4. (10 points) Show that $f(x)=\sqrt{x} \sin (\cos x)$ is uniformly continuous on the interval $[0, \pi)$.

Solution:

Note that \sqrt{x} and $\cos x$ are continuous for all $x \geq 0$. Also, $\sin x$ is continuous on the interval $[-1,1]=\operatorname{Ran}(\cos x)$. Since the composition of continuous functions is continuous (Theorem 3.17.5 from the text), $\sin (\cos x)$ is continuous on $[0, \pi]$. Now by Theorem 3.17.4 (text), the product of continuous functions is continuous. We have shown that f is continuous on the closed interval $[0, \pi]$. The result now follows by Theorem 3.19.5 (text).
5. (Bonus - 5 points) Regarding Problem 3b: Show that the uniform continuity condition can not be relaxed. That is, find a continuous function $f: A \rightarrow \mathbb{R}$ and a Cauchy sequence $\left\{x_{n}\right\} \subset A$ such that $\left\{f\left(x_{n}\right)\right\}$ is not a Cauchy sequence.

Solution:

Let $f(x)=1 / x$. Then f is continuous on $(0,1]$. Now let $x_{n}=1 / n$. Then $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ but $f\left(x_{n}\right) \rightarrow \infty$.
6. (Double Bonus - 5 points) The solution above used the unboundedness of f to obtain the desired result. Find a bounded continuous function $f: A \rightarrow \mathbb{R}$ and a Cauchy sequence $\left\{x_{n}\right\} \subset A$ such that $\left\{f\left(x_{n}\right)\right\}$ is not a Cauchy sequence. This is due by Thursday at 12:00 pm.

