Math 320
Arithmetic-Geometric Inequality
Summer 2015

In its most basic form, the Arithmetic-Geometric Mean Inequality (GA) states the following. Let $a \geq b>0$. Then

$$
\text { (1) } \sqrt{a b} \leq \frac{a+b}{2}
$$

with equality if and only if $a=b$.
We will investigate generalizations of the GA inequality along with several interesting proofs. We begin with a geometric proof.

Proof. Let $a \geq b>0$ and let $s=\sqrt{a}, t=\sqrt{b}$. We construct the right triangle $\triangle A B C$ and the square $\square B C F E$ as shown in the sketch below.


Notice that $\triangle A B C \sim \triangle B D C \cong \triangle C G F$ and that the square contains four triangles that are congruent to $\triangle B D C$. Now by the similarity of the first two triangles, we have

$$
\begin{equation*}
\frac{s}{y}=\frac{t}{x} \quad \text { or } \quad s=\frac{t y}{x} \tag{2}
\end{equation*}
$$

Now since $y \geq x$, the sum of the areas of the four triangles congruent to $\triangle B D C$ is not greater than the area of the square $\square B C F E$. That is,
(3)

$$
2 x y \leq t^{2}=x^{2}+y^{2}
$$

Math 320

[^0] Arithmetic-Geometric Inequality Summer 2015

Thus

$$
\begin{aligned}
\sqrt{a b}=s t & =\frac{t y}{x} t=x y \frac{t^{2}}{x^{2}}=x y\left(1+\frac{y^{2}}{x^{2}}\right) \\
& \leq \frac{t^{2}}{2}\left(1+\frac{y^{2}}{x^{2}}\right)=\frac{1}{2}\left(t^{2}+\frac{t^{2} y^{2}}{x^{2}}\right) \\
& =\frac{t^{2}+s^{2}}{2} \\
& =\frac{a+b}{2}
\end{aligned}
$$

Here is an easier approach. Once again, let $a \geq b>0$ and consider a circle of diameter $a+b$ as shown in the sketch below. Note: $a=A B, b=B C$, etc.


Clearly,

$$
h \leq \text { radius }=\frac{a+b}{2}
$$

So it's enough to prove that $h=\sqrt{a b}$. Once again, from elementary geometry, we have

$$
\triangle A B D \sim \triangle D B C
$$

So by similarity

$$
\frac{h}{a}=\frac{b}{h}
$$

and the result is immediate

Math 320
Arithmetic-Geometric Inequality

## Summer 2015

First generalization. For $j \in \mathbb{N}$ let $a_{j}>0$. Prove that

$$
\begin{equation*}
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{1}{n} \sum_{j=1}^{n} a_{j} \tag{4}
\end{equation*}
$$

Proof. Since (4) is trivial for $n=1$, we will start with $n=2$. Then we'll use induction to prove the case $n=2^{k}$. Finally, we'll prove the general result.

Case 1. Observe that for $A, B>0$ we have

$$
\text { (5) } \quad \begin{aligned}
(A-B)^{2} & \geq 0 \\
\Longrightarrow A^{2}-2 A B+B^{2} & \geq 0
\end{aligned}
$$

Rearranging yields

$$
A B \leq \frac{1}{2}\left(A^{2}+B^{2}\right)
$$

Letting $A=\sqrt{a}$ and $B=\sqrt{b}$ we obtain (4) for the special case $n=2^{1}$. That is,

$$
\sqrt{a b} \leq \frac{a+b}{2}
$$

Of course, we could have also appealed to the geometric proof above to obtain this result. Notice that because of (5), we have equality in (4) if and only if $a=b$.

Case 2. Now suppose $n=2^{k}$ in (4). We proceed by induction on $k$. The case $k=1$ was proven above. Now suppose that (4) holds with $n=2^{k}$. We need to show that
(6)

$$
\left(a_{1} a_{2} \cdots a_{2^{k+1}}\right)^{1 / 2^{k+1}} \leq \frac{1}{2^{k+1}} \sum_{j=1}^{2^{k+1}} a_{j}
$$

Notice that there are twice as many factors on the left-hand side of (6) as there are on the left-hand side of (4).

$$
\begin{array}{rlr}
\left(a_{1} a_{2} \cdots a_{2^{k+1}}\right)^{1 / 2^{k+1}} & =\left(\sqrt{a_{1} a_{2}} \sqrt{a_{3} a_{4}} \cdots \sqrt{a_{2^{k+1}-1} a_{2^{k+1}}}\right)^{1 / 2^{k}} \\
& \leq \frac{1}{2^{k}} \sum_{j=1}^{2^{k}} \sqrt{a_{2 j-1} a_{2 j}} & \quad \text { (by the induction hypothesis) } \\
& \leq \frac{1}{2^{k}} \sum_{j=1}^{2^{k}} \frac{1}{2}\left(a_{2 j-1}+a_{2 j}\right) \quad \text { (by repeated applications of Case 1) } \\
& \leq \frac{1}{2^{k+1}} \sum_{j=1}^{2^{k+1}} a_{j} &
\end{array}
$$

Math 320
Summer 2015
Case 3. Now for $2^{k-1}<n<2^{k}$, let $m=2^{k}-n$. Then

$$
\begin{aligned}
p=\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & =\left\{\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}\right\}^{2^{k}} \\
& =\left\{\left(a_{1} a_{2} \cdots a_{n}\right)^{2^{k} / n}\right\}^{\frac{1}{2^{k}}} \\
& =(\left(a_{1} a_{2} \cdots a_{n}\right) \underbrace{p \cdot p \cdots p}_{m \text { factors }})^{\frac{1}{2^{k}}} \\
& =(\underbrace{a_{1} a_{2} \cdots a_{n} \cdot p \cdot p \cdots p}_{2^{k} \text { factors }})^{\frac{1}{2^{k}}} \\
& \leq \frac{1}{2^{k}}\left(\sum_{j=1}^{n} a_{j}+m \cdot p\right)
\end{aligned}
$$

by Case 2. Rearranging we obtain

$$
\begin{aligned}
p\left(1-\frac{m}{2^{k}}\right) & \leq \frac{1}{2^{k}} \sum_{j=1}^{n} a_{j} \\
\Longrightarrow\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & \leq \frac{2^{k}}{2^{k}-m} \frac{1}{2^{k}} \sum_{j=1}^{n} a_{j} \\
& =\frac{1}{n} \sum_{j=1}^{n} a_{j}
\end{aligned}
$$

Math 320

Allowing Real Exponents - Now suppose that $p_{j}>0$ for $j=1,2, \ldots n$ and $\sum_{j=1}^{n} p_{j}=1$. Show that

$$
\begin{equation*}
a_{1}^{p_{1}} a_{2}^{p_{2}} \cdots a_{n}^{p_{n}} \leq \sum_{j=1}^{n} p_{j} a_{j} \tag{7}
\end{equation*}
$$

Remark: Observe that (4) is a special case of (7) with $p_{j}=1 / n, j=1,2, \ldots n$.
First we prove another generalization of (3). Suppose that $p, q>1$ are conjugate exponents. That is, suppose that
(8) $\frac{1}{p}+\frac{1}{q}=1$

Now let $A, B>0$. Prove that

$$
\begin{equation*}
A B \leq \frac{A^{p}}{p}+\frac{B^{q}}{q} \tag{9}
\end{equation*}
$$

This is Young's Inequality.
Proof.
From the sketch we observe that the area of both hatched regions is not less than the area of a rect angle with side lengths $A$ and $B$. Also, because of (8) we have

$$
1+\frac{1}{p-1}=\frac{p}{p-1}=q
$$



Thus

$$
\begin{aligned}
A B & \leq \underbrace{\int_{0}^{A} x^{p-1} d x}_{\text {cross-hatched area }}+\underbrace{\left(B \times B^{\frac{1}{p-1}}-\int_{0}^{B^{\frac{1}{p-1}}} x^{p-1} d x\right)}_{\text {left-hatched area }} \\
& =\frac{A^{p}}{p}+B^{q}-\frac{B^{q}}{p} \\
& =\frac{A^{p}}{p}+\left(1-\frac{1}{p}\right) B^{q}
\end{aligned}
$$

which is (9).
Remark. It is also clear from the sketch that we have equality precisely when $A=B^{\frac{1}{p-1}}$. That is,

$$
A B=\frac{A^{p}}{p}+\frac{B^{q}}{q} \quad \Longleftrightarrow \quad A^{p}=B^{q}
$$

Math 320
Arithmetic-Geometric Inequality
Summer 2015

Proof. (of main result) First, suppose that $a, b>0$ and $\alpha, \beta>0$ with $\alpha+\beta=1$. Now write $p=1 / \alpha$ and $q=1 / \beta$ and let $A=a^{\alpha}=a^{1 / p}$ and $B=b^{\beta}=b^{1 / q}$ in (9) to obtain
(10)

$$
a^{\alpha} b^{\beta} \leq \alpha a+\beta b
$$

which is (7) for $n=2$.
Next, suppose that $a, b, c>0$ and $\alpha, \beta, \gamma>0$ with $\alpha+\beta+\gamma=1$. Then

$$
\begin{aligned}
a^{\alpha} b^{\beta} c^{\gamma} & =\left(a^{\frac{\alpha}{\alpha+\beta}} b^{\frac{\alpha}{\alpha+\beta}}\right)^{\alpha+\beta} c^{\gamma} \\
& \leq(\alpha+\beta)\left(a^{\frac{\alpha}{\alpha+\beta}} b^{\frac{\alpha}{\alpha+\beta}}\right)+\gamma c \\
& \leq(\alpha+\beta)\left(\frac{\alpha}{\alpha+\beta} a+\frac{\alpha}{\alpha+\beta} b\right)+\gamma c \\
& =\alpha a+\beta b+\gamma c
\end{aligned}
$$

Here we have applied the inequality (10) twice.
The path to (7) is now clear. We proceed by induction on $n$.
$P(1): \quad a_{1}^{1}=1 \cdot a_{1}$ is obvious.
$P(n)$ : Now suppose that (7) is true (the induction hypothesis) and that $p_{j}>0$ for $j=1,2, \ldots n+1$ with $\sum_{j=1}^{n+1} p_{j}=1$. Also, let $\alpha=\sum_{j=1}^{n} p_{j}$. Then $\alpha+p_{n+1}=1$ and

$$
\begin{aligned}
a_{1}^{p_{1}} a_{2}^{p_{2}} \cdots a_{n+1}^{p_{n+1}} & =\left(a_{1}^{p_{1} / \alpha} a_{2}^{p_{2} / \alpha} \cdots a_{n}^{p_{n} / \alpha}\right)^{\alpha} a_{n+1}^{p_{n+1}} \\
& \leq \alpha\left(a_{1}^{p_{1} / \alpha} a_{2}^{p_{2} / \alpha} \cdots a_{n}^{p_{n} / \alpha}\right)+p_{n+1} a_{n+1}
\end{aligned}
$$

by (10). Applying the induction hypothesis to the parenthetical quantity yields

$$
\begin{aligned}
& \leq \alpha\left\{\left(p_{1} / \alpha\right) a_{1}+\left(p_{2} / \alpha\right) a_{2}+\cdots+\left(p_{n} / \alpha\right) a_{n}\right\}+p_{n+1} a_{n+1} \\
& =\sum_{j=1}^{n} p_{j} a_{j}+p_{n+1} a_{n+1}
\end{aligned}
$$

as desired.

Pólya's Proof - According to J. Michael Steele, George Pólya discovered the proof outlined below in a dream.

Once again, we suppose $p_{j}>0$ for $j=1,2, \ldots n$ and $\sum_{j=1}^{n} p_{j}=1$. Also, let $A$ and $G$ denote, respectively, the arithmetic and geometric means of $a_{1}, a_{2}, \ldots, a_{n}$ with each $a_{j}>0$. We wish to show that
Pólya's proof begins with the observation $G \leq A$

$$
1+x \leq e^{x}
$$

Now the substitution $x \rightarrow x-1$ yields
(11) $\quad x \leq e^{x-1}$

So for $j=1,2, \ldots, n$ the bound in (11) implies

$$
a_{j} \leq e^{a_{j}-1} \text { and } a_{j}^{p_{j}} \leq e^{p_{j} a_{j}-p_{j}}
$$



Thus
(12)

$$
\begin{aligned}
G=a_{1}^{p_{1}} a_{2}^{p_{2}} \cdots a_{n}^{p_{n}}={ }^{\operatorname{def}} \prod_{j=1}^{n} a_{j}^{p_{j}} & \leq \prod_{j=1}^{n} e^{p_{j} a_{j}-p_{j}} \\
& =e^{\sum_{j=1}^{n} p_{j} a_{j}-\sum_{j=1}^{n} p_{j}} \\
& =e^{A-1}
\end{aligned}
$$

Appealing to (11) once again, we see that
(13)
$A \leq e^{A-1}$
And now we appear to be in trouble since (12) and (13) show that $A$ and $G$ are bounded above by $e^{A-1}$. This is not what we want. Notice however that the right-hand side of
$(12)$ is one precisely when the arithmetic mean is one.
To see how this helps us, let $\alpha_{j}=a_{j} / A$. Then

$$
\sum_{j=1}^{n} p_{j} \alpha_{j}=\sum_{j=1}^{n} \frac{p_{j} a_{j}}{A}=\frac{1}{A} \sum_{j=1}^{n} p_{j} a_{j}=1
$$

Thus
(14)

$$
\frac{1}{A} \prod_{j=1}^{n} a_{j}^{p_{j}}=\prod_{j=1}^{n}\left(\frac{a_{j}}{A}\right)^{p_{j}}=\prod_{j=1}^{n} \alpha_{j}^{p_{j}} \leq 1
$$

Thus
(15)

$$
\prod_{j=1}^{n} a_{j}^{p_{j}} \leq A=\sum_{j=1}^{n} p_{j} a_{j}
$$

as desired.


[^0]:    20

