Math 320 Arithmetic-Geometric Inequality Summer 2015

In its most basic form, the Arithmetic-Geometric Mean Inequality (GA) states the
following. Let @ > b > 0. Then

1) x@g"’;b

with equality if and only if a = b.
We will investigate generalizations of the GA inequality along with several interesting

proofs. We begin with a geometric proof.

Proof. Let a>b > 0 and let s = \/a,t = v/b. We construct the right triangle AABC and
the square OBCFE as shown in the sketch below.
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Notice that AABC ~ ABDC = ACGF and that the square contains four triangles that
are congruent to ABDC. Now by the similarity of the first two triangles, we have

£ t t
(2) ol g 5=
y =z x

Now since y > z, the sum of the areas of the four triangles congruent to ABDC' is not
greater than the area of the square OBCFE. That is,

(3) 22y < t? = 2%+
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Here is an easier approach. Once again, let a > b > 0 and consider a circle of diameter
a + b as shown in the sketch below. Note: a = AB, b= BC, etc.
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So it’s enough to prove that h = vab. Once again, from elementary geometry, we have
AABD ~ ADBC
So by similarity
h b
a h
and the result is immediate.
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First generalization. For j € N let a; > 0. Prove that
) (@12 an) /" < Zaj

Proof. Since (4) is trivial for n = 1, we will start with n = 2. Then we’ll use induction to
prove the case n = 2¥. Finally, we'll prove the general result.

Case 1. Observe that for A, B > 0 we have

(5) (A-B)*>0
— A2 -24B+B*>0

Rearranging yields
AB < (44 B)
Letting A = /a and B = v/b we obtain (4) for the special case n = 2!. That is,

%ﬁs“;b

Of course, we could have also appealed to the geometric proof above to obtain this result.

Notice that because of (5), we have equality in (4) if and only if a = b.

Case 2. Now suppose n = 2¥ in (4). We proceed by induction on k. The case k = 1 was
proven above. Now suppose that (4) holds with n = 2¥. We need to show that

ok+1

N k+1 1
(6) (@az- - agen) T < oo D Ty
j=1

Notice that there are twice as many factors on the left-hand side of (6) as there are on
the left-hand side of (4).

k
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1
< ok Z Vazj—1a25 (by the induction hypothesis)
=
1 . .
< oF Z 3 (agj—1 + azj) (by repeated applications of Case 1)
j=1
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Case 3. Now for 281 < n < 2% let m = 28 —n. Then

ok

l/n 0102 l/n}

p=(amaz---a

1
2 n | 2~
(l1112 (ln / }

= ((fmu an)p-p-p
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a1a2 - Qp " p-p-

2k factors

IN

1 n
Q_k Z aj+m-p
by Case 2. Rearranging we obtain
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Allowing Real Exponents - Now suppose that p; > 0 for j = 1,2,...n and
> j—1pj = 1. Show that

n

P1_p2 Pn s

<7) ay ay’ -c-ap" < E pja;
Jj=1

Remark: Observe that (4) is a special case of (7) with p; =1/n, j=1,2,...n.

First we prove another generalization of (3). Suppose that p,q > 1 are conjugate
exponents. That is, suppose that

1 1
8 —+-=1
(8) P
Now let A, B > 0. Prove that
AP Bt
9) AB< —+ —
p q

This is Young’s Inequality.

Proof.

From the sketch we observe that the area of both
hatched regions is not less than the area of a rect-
angle with side lengths A and B. Also, because
of (8) we have

Thus

1

A B BP-T
AB < / P ldr + BxBﬁ—/ 2P~ da
0 0
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cross-hatched area
left-hatched area

Ap B
= 4B -=
P p

»
~ i (i-3)
p p

which is (9). O

1
Remark. Tt is also clear from the sketch that we have equality precisely when A = Br-1.

That is,
AP B
AB=—+— << A?=B¢
p q

o
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Proof. (of main result) First, suppose that a,b > 0 and «, 8 > 0 with a + 8 = 1. Now
write p = 1/a and ¢ = 1/8 and let A = a® = a'/? and B = b® = b'/ in (9) to obtain

(10) a®b? < aa + Bb

which is (7) for n = 2.

Next, suppose that a,b,¢ > 0 and a, 8,7 > 0 with o+ f+ v = 1. Then

b = (aﬁﬁbﬁ)mrﬁ 4

<(a+p) (aﬁﬂbﬁj) + e
< (a+pB) (%ﬂga-k%ﬁb) +c
=aa+ Bb+ e

Here we have applied the inequality (10) twice.

The path to (7) is now clear. We proceed by induction on n.

P(1): al=1-a; is obvious.

P(n): Now suppose that (7) is true (the induction hypothesis) and that p; > 0 for
=1,

J 2,...n+1 with Z;L;l pj = 1. Also, let @ =377, pj. Then a + py41 =1 and
(e
apta st = (e )

<a (aql/”a?/“ .- -aﬁ”/ﬂ) + Prt1Gnt1
by (10). Applying the induction hypothesis to the parenthetical quantity yields

< a{(pi/@)ar + (p2/a)az + - + (pn/@)an} + ppi1ani1

n
= E Pjaj + Pnt1Gn41
=1

as desired.
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Pélya’s Proof - According to J. Michael Steele, George Pélya discovered the proof
outlined below in a dream.

Once again, we suppose p; > 0 for j =1,2,...n and Z;f’zl pj = 1. Also, let A and G
denote, respectively, the arithmetic and geometric means of ay,as, ..., a, with each
a; > 0. We wish to show that

G<A
Pélya’s proof begins with the observation

14+z<e”
Now the substitution x — x — 1 yields 10 1
(11) < et

So for j = 1,2,...,n the bound in (11) implies

_ . |
a; <e%~!and alf < ePi%iTP 9
Thus
n n
) _
G =t ap = [[ap < [T e
j=1 J=1
I B D D
<12) _ 8A—l

Appealing to (11) once again, we see that
(13) A<eATt

And now we appear to be in trouble since (12) and (13) show that A and G are bounded
above by eA~1. This is not what we want. Notice however that the right-hand side of
(12) is one precisely when the arithmetic mean is one.

To see how this helps us, let a; = a;/A. Then

n n p a; 1 n
S DIIUEY
=1 j=1 j=1
Thus
1 n n a P n
pj_ A A P
(14) e I ik *H(Z) =[ley <1
Jj=1 j=1 Jj=1
Thus
n n
(15) [Ia7 <A=3 pia
J=1 j=1
as desired.
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