
Math 320 Arithmetic-Geometric Inequality Summer 2015

In its most basic form, the Arithmetic-Geometric Mean Inequality (GA) states the
following. Let a ≥ b > 0. Then

(1)
√

ab ≤ a + b

2

with equality if and only if a = b.

We will investigate generalizations of the GA inequality along with several interesting
proofs. We begin with a geometric proof.

Proof. Let a ≥ b > 0 and let s =
√

a, t =
√

b. We construct the right triangle △ABC and
the square �BCFE as shown in the sketch below.
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Notice that △ABC ∼ △BDC ∼= △CGF and that the square contains four triangles that
are congruent to △BDC. Now by the similarity of the first two triangles, we have

(2)
s

y
=

t

x
or s =

ty

x

Now since y ≥ x, the sum of the areas of the four triangles congruent to △BDC is not
greater than the area of the square �BCFE. That is,

2xy ≤ t2 = x2 + y2(3)
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Thus

√
ab = st =

ty

x
t = xy

t2

x2
= xy

(

1 +
y2

x2

)

≤ t2

2

(

1 +
y2

x2

)

=
1

2

(

t2 +
t2y2

x2

)

=
t2 + s2

2

=
a + b

2

Here is an easier approach. Once again, let a ≥ b > 0 and consider a circle of diameter
a + b as shown in the sketch below. Note: a = AB, b = BC, etc.

a b

h

b
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Clearly,

h ≤ radius =
a + b

2

So it’s enough to prove that h =
√

ab. Once again, from elementary geometry, we have

△ABD ∼ △DBC

So by similarity
h

a
=

b

h

and the result is immediate.
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First generalization. For j ∈ N let aj > 0. Prove that

(4) (a1a2 · · · an)1/n ≤ 1

n

n∑

j=1

aj

Proof. Since (4) is trivial for n = 1, we will start with n = 2. Then we’ll use induction to
prove the case n = 2k. Finally, we’ll prove the general result.

Case 1. Observe that for A, B > 0 we have

(A − B)2 ≥ 0(5)

=⇒ A2 − 2AB + B2 ≥ 0

Rearranging yields

AB ≤ 1

2
(A2 + B2)

Letting A =
√

a and B =
√

b we obtain (4) for the special case n = 21. That is,

√
ab ≤ a + b

2

Of course, we could have also appealed to the geometric proof above to obtain this result.
Notice that because of (5), we have equality in (4) if and only if a = b.

Case 2. Now suppose n = 2k in (4). We proceed by induction on k. The case k = 1 was
proven above. Now suppose that (4) holds with n = 2k. We need to show that

(6) (a1a2 · · · a2k+1)1/2k+1 ≤ 1

2k+1

2k+1

∑

j=1

aj

Notice that there are twice as many factors on the left-hand side of (6) as there are on
the left-hand side of (4).

(a1a2 · · · a2k+1)1/2k+1

=
(√

a1a2

√
a3a4 · · · √

a2k+1
−1a2k+1

)1/2k

≤ 1

2k

2k
∑

j=1

√
a2j−1a2j (by the induction hypothesis)

≤ 1

2k

2k
∑

j=1

1

2
(a2j−1 + a2j) (by repeated applications of Case 1)

≤ 1

2k+1

2k+1

∑

j=1

aj
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Case 3. Now for 2k−1 < n < 2k, let m = 2k − n. Then

p = (a1a2 · · · an)1/n =
{

(a1a2 · · · an)1/n
} 2

k

2k

=
{

(a1a2 · · · an)2k/n
} 1

2k

=



(a1a2 · · · an) p · p · · · p
︸ ︷︷ ︸

m factors





1

2k

=



a1a2 · · · an · p · p · · · p
︸ ︷︷ ︸

2k factors





1

2k

≤ 1

2k





n∑

j=1

aj + m · p





by Case 2. Rearranging we obtain

p
(

1 − m

2k

)

≤ 1

2k

n∑

j=1

aj

=⇒ (a1a2 · · · an)1/n ≤ 2k

2k − m

1

2k

n∑

j=1

aj

=
1

n

n∑

j=1

aj
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Allowing Real Exponents - Now suppose that pj > 0 for j = 1, 2, . . . n and
∑n

j=1
pj = 1. Show that

(7) ap1

1 ap2

2 · · · apn
n ≤

n∑

j=1

pjaj

Remark: Observe that (4) is a special case of (7) with pj = 1/n, j = 1, 2, . . . n.

First we prove another generalization of (3). Suppose that p, q > 1 are conjugate
exponents. That is, suppose that

(8)
1

p
+

1

q
= 1

Now let A, B > 0. Prove that

(9) AB ≤ Ap

p
+

Bq

q

This is Young’s Inequality.

Proof.

y = xp−1

A

B

B
1

p−1

From the sketch we observe that the area of both
hatched regions is not less than the area of a rect-
angle with side lengths A and B. Also, because
of (8) we have

1 +
1

p − 1
=

p

p − 1
= q

Thus

AB ≤
ˆ A

0

xp−1 dx

︸ ︷︷ ︸

cross-hatched area

+



B × B
1

p−1 −
ˆ B

1
p−1

0

xp−1 dx





︸ ︷︷ ︸

left-hatched area

=
Ap

p
+ Bq − Bq

p

=
Ap

p
+

(

1 − 1

p

)

Bq

which is (9).

Remark. It is also clear from the sketch that we have equality precisely when A = B
1

p−1 .
That is,

AB =
Ap

p
+

Bq

q
⇐⇒ Ap = Bq
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Proof. (of main result) First, suppose that a, b > 0 and α, β > 0 with α + β = 1. Now
write p = 1/α and q = 1/β and let A = aα = a1/p and B = bβ = b1/q in (9) to obtain

(10) aαbβ ≤ αa + βb

which is (7) for n = 2.

Next, suppose that a, b, c > 0 and α, β, γ > 0 with α + β + γ = 1. Then

aαbβcγ =
(

a
α

α+β b
α

α+β

)α+β
cγ

≤ (α + β)
(

a
α

α+β b
α

α+β

)

+ γc

≤ (α + β)

(
α

α + β
a +

α

α + β
b

)

+ γc

= αa + βb + γc

Here we have applied the inequality (10) twice.

The path to (7) is now clear. We proceed by induction on n.

P (1) : a1
1 = 1 · a1 is obvious.

P (n) : Now suppose that (7) is true (the induction hypothesis) and that pj > 0 for
j = 1, 2, . . . n + 1 with

∑n+1

j=1
pj = 1. Also, let α =

∑n
j=1

pj . Then α + pn+1 = 1 and

ap1

1 ap2

2 · · · a
pn+1

n+1 =
(

a
p1/α
1 a

p2/α
2 · · · apn/α

n

)α
a

pn+1

n+1

≤ α
(

a
p1/α
1 a

p2/α
2 · · · apn/α

n

)

+ pn+1an+1

by (10). Applying the induction hypothesis to the parenthetical quantity yields

≤ α {(p1/α)a1 + (p2/α)a2 + · · · + (pn/α)an} + pn+1an+1

=
n∑

j=1

pjaj + pn+1an+1

as desired.
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Pólya’s Proof - According to J. Michael Steele, George Pólya discovered the proof
outlined below in a dream.

Once again, we suppose pj > 0 for j = 1, 2, . . . n and
∑n

j=1
pj = 1. Also, let A and G

denote, respectively, the arithmetic and geometric means of a1, a2, . . . , an with each
aj > 0. We wish to show that

G ≤ A

5

10

−1 1 2 3

y = ex

y = x + 1

Pólya’s proof begins with the observation

1 + x ≤ ex

Now the substitution x → x − 1 yields

x ≤ ex−1(11)

So for j = 1, 2, . . . , n the bound in (11) implies

aj ≤ eaj−1 and a
pj

j ≤ epjaj−pj

Thus

G = ap1

1 ap2

2 · · · apn
n =def

n∏

j=1

a
pj

j ≤
n∏

j=1

epjaj−pj

= e
∑n

j=1
pjaj−

∑n
j=1

pj

= eA−1(12)

Appealing to (11) once again, we see that

(13) A ≤ eA−1

And now we appear to be in trouble since (12) and (13) show that A and G are bounded
above by eA−1. This is not what we want. Notice however that the right-hand side of
(12) is one precisely when the arithmetic mean is one.

To see how this helps us, let αj = aj/A. Then

n∑

j=1

pjαj =

n∑

j=1

pjaj

A
=

1

A

n∑

j=1

pjaj = 1

Thus

1

A

n∏

j=1

a
pj

j =

n∏

j=1

(aj

A

)pj

=

n∏

j=1

α
pj

j ≤ 1(14)

Thus

n∏

j=1

a
pj

j ≤ A =

n∑

j=1

pjaj(15)

as desired.
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