Series Tests for Convergence - Summary

Recall

Definition. Given the infinite series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots \tag{1}
\end{equation*}
$$

we define the following. The number a_{n} is called the nth term of the series. It is also called the summand. The nth partial sum of the series is denoted by s_{n} and is defined by

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
$$

Notice that the partial sums generate a new sequence, the so-called sequence of partial sums, $\left\{s_{n}\right\}$. Now if this new sequence converges to a limit, say $L \in \mathbb{R}$, we say that the series (1) converges and that its sum is L. Specifically,

$$
\begin{equation*}
s_{n} \rightarrow L \text { as } n \rightarrow \infty \quad \Longrightarrow \quad \sum_{n=1}^{\infty} a_{n}=L \tag{2}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} s_{n} \tag{3}
\end{equation*}
$$

whenever the limit exists. Otherwise, the series diverges.

We have the following general test for convergence.
Theorem 1. Cauchy Criterion for Series. The series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if, for every $\varepsilon>0$ there exists an $N \in \mathbb{N}$ such that for all $n>m \geq N$ we have

$$
\left|a_{m+1}+a_{m+2}+\cdots a_{n}\right|=\left|\sum_{j=m+1}^{n} a_{j}\right|<\varepsilon
$$

Proof. Notice that

$$
s_{n}-s_{m}=\sum_{j=1}^{n} a_{j}-\sum_{j=1}^{m} a_{j}=a_{m+1}+a_{m+2}+\cdots a_{n}
$$

Now apply the Cauchy Criterion for sequences to $\left\{s_{n}\right\}$.
We summarize the various convergence tests for infinite series. Suppose that $a_{n} \geq 0$ for all $n \geq N,(N \in \mathbb{Z})$. To test the series $\sum a_{n}$ for convergence (or divergence) we have the following.

1. n-Term Test (for Divergence).

$$
\text { If } a_{n} \nrightarrow 0 \text { then } \sum_{n} a_{n} \text { diverges. }
$$

Remark. This test is valid for any series, not just series with nonnegative terms.
2. Cauchy Condensation Test. If $\left\{a_{n}\right\}$ is a nonincreasing sequence that converges to 0 . Then

$$
\sum_{n} a_{n}<\infty \text { iff } \sum_{n} 2^{n} a_{2^{n}}<\infty
$$

3. Comparison Test.

(a) $\sum a_{n}$ converges if there is a convergent series $\sum c_{n}$ with $a_{n} \leq c_{n}$ for all $n \geq N$ for some positive integer N.
(b) $\sum a_{n}$ diverges if there is a divergent series $\sum d_{n}$ with $a_{n} \geq d_{n} \geq 0$ for all $n \geq N$ for some positive integer N.
4. Limit Comparison Test. Let $a_{n}>0$ and $b_{n}>0$ for all $n \geq N$.
(a) Suppose that $\frac{a_{n}}{b_{n}} \rightarrow \delta \in[0, \infty)$. If $\sum b_{n}$ converges then so does $\sum a_{n}$.
(b) Suppose that $\frac{a_{n}}{b_{n}} \rightarrow \delta \in(0, \infty]$. If $\sum b_{n}$ diverges then so does $\sum a_{n}$.
5. Ratio Test. Let $\sum a_{n}$ be a series of positive terms and suppose that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho
$$

Then
(a) the series converges if $\rho<1$,
(b) the series diverges if $\rho>1$ or ρ is infinite,
(c) the test is inconclusive if $\rho=1$.
6. Root Test. Suppose that $a_{n} \geq 0$ for $n \geq N$ and

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho
$$

Then
(a) the series converges if $\rho<1$,
(b) the series diverges if $\rho>1$ or ρ is infinite,
(c) the test is inconclusive if $\rho=1$.
7. Alternating Series Test (Leibnitz's Theorem). Let N be a positive integer. The alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots
$$

converges provided that the following three conditions are satisfied.
(a) $a_{n}>0$ for all $n \geq N$.
(b) $a_{n} \geq a_{n+1}$ for all $n \geq N$.
(c) $a_{n} \rightarrow 0$.

Example 1. Does the series below converge or diverge. Give reasons for your answer.

$$
\sum_{n=2}^{\infty} \frac{1}{1+(\ln n)^{3}}
$$

We claim that the series diverges by the Cauchy Condensation Test. Let

$$
a_{n}=\frac{1}{1+(\ln n)^{3}}
$$

Notice that $a_{n} \rightarrow 0$ and, since the denominator is increasing, we clearly have $a_{n} \geq a_{n+1}$ so that the CCT applies. So the series $\sum a_{n}$ and the series $\sum 2^{n} a_{2^{n}}$ converge or diverge together. Now

$$
\sum_{n=2}^{\infty} 2^{n} a_{2^{n}}=\sum_{n=2}^{\infty} \frac{2^{n}}{1+\left(\ln 2^{n}\right)^{3}}=\sum_{n=2}^{\infty} \frac{2^{n}}{1+(\ln 2)^{3} n^{3}}
$$

but

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{1+(\ln 2)^{3} n^{3}}=\infty
$$

So the series $\sum 2^{n} a_{2^{n}}$ diverges by the n th-term test. The result follows.

Example 2. Do the following series converge or diverge. Justify your claim.
a. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+9}}$
b. $\sum_{n=1}^{\infty} \frac{n+1}{n 2^{n}}$
c. $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+2}$
d. $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3}}$
e. $\sum_{n=1}^{\infty} \frac{2^{n}}{(2 n)!}$
f. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n!)^{2}}{(2 n)!}$

Example 3. Do the following series converge or diverge. Justify your claim.
a. $\sum_{n=1}^{\infty} n e^{-n^{2}}$
b. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+2}$
c. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n}$
d. $\sum_{n=1}^{\infty} \frac{\cos (1 / n)}{n^{2}}$
e. $\sum_{n=1}^{\infty} \frac{3^{n} n!}{(2 n)!}$
f. $\sum_{n=1}^{\infty}(1-\cos (1 / n))$

