2.7

Series Tests for Convergence - Summary

Recall

Definition. Given the infinite series

(1)
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

we define the following. The number a_n is called the **nth term** of the series. It is also called the **summand**. The **nth partial sum** of the series is denoted by s_n and is defined by

$$s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$$

Notice that the partial sums generate a new sequence, the so-called **sequence of partial sums**, $\{s_n\}$. Now if this new sequence converges to a limit, say $L \in \mathbb{R}$, we say that the series (1) converges and that its **sum** is *L*. Specifically,

 s_n

(2) $s_n \to L \text{ as } n \to \infty \implies \sum_{n=1}^{\infty} a_n = L$

In other words,

(3)
$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \lim_{n \to \infty}$$

whenever the limit exists. Otherwise, the series diverges.

2.7

1

We have the following general test for convergence.

Theorem 1. Cauchy Criterion for Series. The series $\sum_{n=1}^{\infty} a_n$ converges if and only if, for every $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all $n > m \ge N$ we have

$$|a_{m+1} + a_{m+2} + \dots + a_n| = \left|\sum_{j=m+1}^n a_j\right| < \varepsilon$$

Proof. Notice that

$$s_n - s_m = \sum_{j=1}^n a_j - \sum_{j=1}^m a_j = a_{m+1} + a_{m+2} + \dots + a_n$$

Now apply the Cauchy Criterion for sequences to $\{s_n\}$.

We summarize the various convergence *tests* for infinite series. Suppose that $a_n \ge 0$ for all $n \ge N$, $(N \in \mathbb{Z})$. To test the series $\sum a_n$ for convergence (or divergence) we have the following.

1. *n*-Term Test (for Divergence).

If
$$a_n \not\rightarrow 0$$
 then $\sum_n a_n$ diverges

Remark. This test is valid for any series, not just series with nonnegative terms.

2. Cauchy Condensation Test. If $\{a_n\}$ is a nonincreasing sequence that converges to 0. Then

$$\sum_n a_n < \infty \quad \text{iff} \quad \sum_n 2^n a_{2^n} < \infty$$

2

2.7

3. Comparison Test.

- (a) $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \leq c_n$ for all $n \geq N$ for some positive integer N.
- (b) $\sum a_n$ diverges if there is a divergent series $\sum d_n$ with $a_n \ge d_n \ge 0$ for all $n \ge N$ for some positive integer N.
- 4. Limit Comparison Test. Let $a_n > 0$ and $b_n > 0$ for all $n \ge N$.
 - (a) Suppose that a_n/b_n → δ ∈ [0,∞). If ∑ b_n converges then so does ∑ a_n.
 (b) Suppose that a_n/b_n → δ ∈ (0,∞]. If ∑ b_n diverges then so does ∑ a_n.
- 5. **Ratio Test.** Let $\sum a_n$ be a series of positive terms and suppose that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$$

Then

- (a) the series *converges* if $\rho < 1$,
- (b) the series *diverges* if $\rho > 1$ or ρ is infinite,
- (c) the test is *inconclusive* if $\rho = 1$.

6. **Root Test.** Suppose that $a_n \ge 0$ for $n \ge N$ and

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$$

Then

(a) the series *converges* if
$$\rho < 1$$
,

(b) the series *diverges* if
$$\rho > 1$$
 or ρ is infinite,

(c) the test is *inconclusive* if $\rho = 1$.

2.7

3

7. Alternating Series Test (Leibnitz's Theorem). Let N be a positive integer. The alternating series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges provided that the following three conditions are satisfied.

(a)
$$a_n > 0$$
 for all $n \ge N$.
(b) $a_n \ge a_{n+1}$ for all $n \ge N$.
(c) $a_n \to 0$.

Example 1. Does the series below converge or diverge. *Give reasons for your answer.*

$$\sum_{n=2}^{\infty} \frac{1}{1 + (\ln n)^3}$$

We claim that the series diverges by the Cauchy Condensation Test. Let

$$a_n = \frac{1}{1 + (\ln n)^3}$$

Notice that $a_n \to 0$ and, since the denominator is increasing, we clearly have $a_n \ge a_{n+1}$ so that the CCT applies. So the series $\sum a_n$ and the series $\sum 2^n a_{2^n}$ converge or diverge together. Now

$$\sum_{n=2}^{\infty} 2^n a_{2^n} = \sum_{n=2}^{\infty} \frac{2^n}{1 + (\ln 2^n)^3} = \sum_{n=2}^{\infty} \frac{2^n}{1 + (\ln 2)^3 n^3}$$

but

$$\lim_{n \to \infty} \frac{2^n}{1 + \left(\ln 2\right)^3 n^3} = \infty$$

So the series $\sum 2^n a_{2^n}$ diverges by the *n*th-term test. The result follows.

4

2.7

Example 2. Do the following series converge or diverge. Justify your claim.

a.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 9}}$$

b.
$$\sum_{n=1}^{\infty} \frac{n+1}{n2^n}$$

c.
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+2}$$

d.
$$\sum_{n=1}^{\infty} \frac{\left(\ln n\right)^2}{n^3}$$

e.
$$\sum_{n=1}^{\infty} \frac{2^n}{(2n)!}$$

f.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n!)^2}{(2n)!}$$

5

2.7

Example 3. Do the following series converge or diverge. Justify your claim.

a.
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

b.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 2}$$

c.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$$

d.
$$\sum_{n=1}^{\infty} \frac{\cos(1/n)}{n^2}$$

e.
$$\sum_{n=1}^{\infty} \frac{3^n n!}{(2n)!}$$

f.
$$\sum_{n=1}^{\infty} (1 - \cos(1/n))$$

6