Let $a > 0$ and $b > 0$. Use an ε -*N* argument to prove the limit below. *Note:* This is one of the more annoying forms.

$$
\lim_{n \to \infty} \frac{n}{an^2 - b} = 0
$$

Proof. We want to show that we can choose n large enough so that denominator is positive and we can drop the absolute values below. So *n an*² − *b* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\epsilon \in \mathbb{R}$. If $n > \sqrt{b/a}$ then the

$$
\left| \frac{n}{an^2 - b} \right| = \frac{n}{an^2 - b} < \varepsilon
$$

$$
\implies \frac{1}{\varepsilon} < \frac{an^2 - b}{n}
$$

$$
= an - \frac{b}{n}
$$

Rearranging we see that we must choose N large enough so that $n > N$ implies

 $n > \frac{1}{1}$ *a* $\sqrt{1}$ $\frac{1}{\varepsilon} + \frac{b}{n}$ *n* \setminus

But what about the *n* on the right-hand side? Observe that $b \ge b/n$ for all $n \in \mathbb{N}$. We are now in position to complete the proof. Let $\varepsilon > 0$ and let $N = \max\left\{\sqrt{b/a}, \frac{1}{a}\left(\frac{1}{\varepsilon} + b\right)\right\}$. Then $n > N$ implies

$$
an > \frac{1}{\varepsilon} + b > \frac{1}{\varepsilon} + \frac{b}{n}
$$

Rearranging we see that

$$
\frac{1}{\varepsilon} < an - \frac{b}{n} = \frac{an^2 - b}{n}
$$

Since everything is positive we can recipricate to obtain

$$
\varepsilon > \frac{n}{an^2 - b} = \left| \frac{n}{an^2 - b} - 0 \right|
$$

as desired.

Remark. This proof is made incredibly annoying because of the "subtraction" in the denominator. Indeed, under the same assumptions above, observe that

$$
\frac{n}{an^2 + b} < \frac{n}{an^2} = \frac{1}{an} < \varepsilon
$$

So now for a given $\varepsilon > 0$ we can choose $N = \frac{1}{\varepsilon}$ $\frac{1}{a\varepsilon}$ so that $n > N$ implies *n* $\left| \frac{n}{an^2 + b} - 0 \right|$ *< ε*. In other words,

$$
\lim_{n \to \infty} \frac{n}{an^2 + b} = 0
$$