Name: \qquad PID: \qquad Section: \qquad

Instructions. Grading is based on method. SHOW ALL WORK.

1. (10 points) Prove that for all $n \geq 2, \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}$. (Hint: To show the base case $(n=2$), you must show that $1+1 / \sqrt{2}>2$. Recall that if a, b are positive, then $a>b$ iff $a^{2}>b^{2}$. So try showing that $a^{2}-b^{2}>0$ for the appropriate choice of a and b.)
2. (10 points) Use an $\varepsilon-N$ argument to prove

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}-n}{n^{2}+2}=5
$$

3. (10 points) Suppose that $\left\{a_{n}\right\}$ is a convergent sequence, say $\lim _{n \rightarrow \infty} a_{n}=a$. If $a_{n} \leq b$ for all $n \in \mathbb{N}$, prove the following:
(i) $a \leq b$
(ii) $a \leq \sup _{n} a_{n}$
