Name:

PID:

Section:

Instructions. Grading is based on method. SHOW ALL WORK.

1. (10 points) Prove that for all $n \ge 2$, $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$. (*Hint:* To show the base case (n = 2), you must show that $1 + 1/\sqrt{2} > 2$. Recall that if a, b are positive, then a > b iff $a^2 > b^2$. So try showing that $a^2 - b^2 > 0$ for the appropriate choice of a and b.)

2. (10 points) Use an ε -N argument to prove

$$\lim_{n \to \infty} \frac{5n^2 - n}{n^2 + 2} = 5$$

3. (10 points) Suppose that $\{a_n\}$ is a convergent sequence, say $\lim_{n\to\infty} a_n = a$. If $a_n \leq b$ for all $n \in \mathbb{N}$, prove the following:

(i)
$$a \le b$$

(ii) $a \le \sup_{n} a_{n}$