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The Exponential Function

In this section we will define the Exponential function by the rule

(1) exp(x) = lim
n→∞

(

1 +
x

n

)n

Along the way, prove a collection of intermediate results, many of which are important in their own right.

Proposition 1. There exists a real number, 2 < e < 4 such that

(

1 +
1

n

)n

ր e as n → ∞

Remark. The notation bn ր b as n → ∞ is shorthand for bn ≤ bn+1 and limn→∞ bn = b.

The limit e, called Euler’s Constant, can be approximated to a high degree of accuracy. For example,

e ≈ 2.718281828459045235360287471352662497757247093699959

to 50 decimal places.

Before we prove Proposition 1, we need a few intermediate results. If a > −1 then

(2) (1 + a)n ≥ 1 + na,

for n ∈ N. This is known as Bernoulli’s Inequality. We will prove this by induction on n. For n = 1
we actually have equality. Now suppose that (2) holds for n = k. Then

(1 + a)k+1 = (1 + a)k(1 + a)

≥ (1 + ka)(1 + a), (since 1 + a > 0)

= 1 + ka + a + ka2

≥ 1 + (k + 1)a

Here the last inequality follows since ka2 ≥ 0 and (2) is established.

Lemma 2. For n ∈ N we have

(i) (1 + 1/n)n is increasing.

(ii) (1 + 1/n)n+1 is decreasing.

(iii) 2 ≤ (1 + 1/n)n < (1 + 1/n)n+1 ≤ 4
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Proof. To prove (i) we let bn = (1 + 1/n)n. We need to show that bn < bn+1. Thus

bn+1

bn
=

(

1 + 1
n+1

)n+1

(

1 + 1
n

)n

=

(

1 + 1
n+1

)n+1

(

1 + 1

n

)n+1

(

1 +
1

n

)

=

(

n2 + 2n

n2 + 2n + 1

)n+1 (

1 +
1

n

)

=

(

1 −
1

(n + 1)2

)n+1 (

1 +
1

n

)

≥

(

1 −
1

n + 1

)(

1 +
1

n

)

, (by (2))

= 1 −
1

n + 1
+

1

n
−

1

n(n + 1)

= 1

The proof of (ii) is similar. The middle inequality in (iii) is obvious since (1 + n−1) > 1. Also, direct
calculation and (i) shows that

2 =

(

1 +
1

1

)1

= b1 < bn, for all n ∈ N

The right-hand inequality is obtained in a similar fashion.

Proof (of Proposition 1). This follows immediately from Lemma 2 and the Monotone Convergence
Theorem.

Note: From Proposition 1 we see that

(3)

(

1 +
1

n

)n

< e, for all n ∈ N

Lemma 3. Let n ∈ N and j ∈ Z with 0 ≤ j ≤ n. Then

(4)

(

n + 1

j

)

1

(n + 1)j
≥

(

n

j

)

1

nj

Proof. Let bj
n denote the right-hand side of (4). Then b0

n = b1
n = 1 for all n ∈ N. Now for 1 < j ≤ n, a

routine calculation yields

bj
n+1 − bj

n =
(n + 1)!

j!(n + 1 − j)!(n + 1)jnj

[

nj − (n + 1)j−1(n + 1 − j)
]
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So it’s enough to show the quantity in brackets is not less than 0. Now

nj − (n + 1)j−1(n + 1 − j) = nj − (n + 1)j + j(n + 1)j−1

= j(n + 1)j−1 −
{

nj−1 + nj−2(n + 1) + · · · + (n + 1)j−1
}

=
{

(n + 1)j−1 − nj−1
}

+
{

(n + 1)j−1 − nj−2(n + 1)
}

+ · · ·

· · · +
{

(n + 1)j−1 − (n + 1)j−1
}

≥ 0

since each of the braced quantities is nonnegative. This proves the lemma.

Proposition 4. A monotone sequence {bn} converges if and only if it contains a convergent subsequence.

Proof. The only if part is clear. Now suppose that {bn} is an increasing sequence with a convergent
subsequence, say {bnk

} and let M > 0. If {bn} is not bounded above, then there is an N ∈ N such that
bN > M . It follows that for all n ≥ N , bn ≥ bN > M . Hence {bnk

} is not bounded above. This is
impossible. The result now follows by the Monotone Convergence Theorem.

Lemma 5. Let x ≥ 0 . Then for each n ∈ N

(5)
(

1 +
x

n

)n
≤

(

1 +
x

n + 1

)n+1

Proof. We clearly have equality when x = 0. Now suppose that x > 0 and let

an(x) =
(

1 +
x

n

)n

From the Binomial Theorem and borrowing the notation from Lemma 3 we have

an(x) =
n
∑

j=0

(

n

j

)

(x

n

)j
=

n
∑

j=0

bj
n xj

Then

an+1(x) − an(x) =
n+1
∑

j=0

bj
n+1 xj −

n
∑

j=0

bj
n xj

=
n
∑

j=0

(

bj
n+1 − bj

n

)

xj +

(

x

n + 1

)n+1

≥

n
∑

j=0

(

bj
n+1 − bj

n

)

xj

≥ 0

Here the last two lines follow from Lemma 3 and the fact xj > 0. This establishes (5).
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Lemma 6. Let p, q ∈ N. Then

lim
n→∞

(

1 +
p/q

n

)n

= ep/q(6)

lim
n→∞

(

1 −
p/q

n

)n

= e−p/q(7)

Proof. Let p, q ∈ N and define

an(x) =
(

1 +
x

n

)n

Also, let an = an(1) and k ∈ N. Then

akq =

(

1 +
1

kq

)kq

=

(

1 +
p/q

kp

)kq

So by Proposition 1,

akq → e as k → ∞.

It follows that

lim
k→∞

akp (p/q) = lim
k→∞

(

1 +
p/q

kp

)kp

= lim
k→∞

{

(

1 +
1

kq

)kq
}p/q

= lim
k→∞

(ank
)p/q

= ep/q

Thus akp(p/q) is a convergent subsequence of the increasing sequence an(p/q). Hence (6) now follows by
Proposition 4.

The limit in (7) is an easy consequence of the next theorem.

Remark. As we saw above,
(

1 +
p/q

n

)n

< ep/q

for all n ∈ N.

Theorem 7. Suppose that bn ≥ 0 for each n ∈ N and that limn→∞ nbn = 0. Then

(a) lim
n→∞

(1 + bn)n = 1, and

(b) lim
n→∞

(1 − bn)n = 1.

In addition, suppose that limn→∞ an = 0 and that limn→∞(1 + an)n is finite. Then
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(c) lim
n→∞

(1 + an + bn)n = lim
n→∞

(1 + an)n

Proof. Let 1 > ε > 0. Then there is an N ∈ N such that n ≥ N implies nbn = |nbn| < ε/2. Using the
Binomial Theorem we see that

1 ≤ (1 + bn)n = 1 +

(

n

1

)

bn +

(

n

2

)

b2
n + · · · + bn

n

= 1 + nbn +
n(n − 1)

2
b2

n + · · · + bn
n

= 1+

Hence n ≥ N implies

(1 + bn)n < 1 +
n

n

ε

2
+

n(n − 1)

2n2

ε2

22
+ · · · +

1

nn

εn

2n

< 1 +
ε

2
+

ε

22
+ · · · +

ε

2n

= 1 + ε
n
∑

j=1

1

2j

< 1 + ε

In other words, for all n ≥ N

|(1 + bn)n − 1| < ε

and part (a) is established.

To prove (b), let cn = bn/(1 − bn). Then by the limit laws

lim
n→∞

ncn = lim
n→∞

nbn

1 − bn
=

limn→∞ nbn

1 − limn→∞ bn
=

0

1 − 0

Now by (a) we have

lim
n→∞

(1 − bn)−n = lim
n→∞

(

1

1 − bn

)n

= lim
n→∞

(

1 − bn

1 − bn
+

bn

1 − bn

)n

= lim
n→∞

(1 + cn)n = 1

Once again, by the limit laws

lim
n→∞

(1 − bn)n =
(

lim
n→∞

(1 − bn)−n
)

−1

= 1
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To prove part (c), notice that 1 + an 6= 0 for n sufficiently large and hence

lim
n→∞

n
bn

1 + an
= lim

n→∞

nbn

1 + an
= 0

So by part (a) and the limit laws

lim
n→∞

(1 + an + bn)n = lim
n→∞

(1 + an)n

(

1 +
bn

1 + an

)n

= lim
n→∞

(1 + an)n lim
n→∞

(

1 +
bn

1 + an

)n

= lim
n→∞

(1 + an)n

Now to prove (7), let bn =
(p/q)2

n2
. Then limn→∞ nbn = 0 and hence,

lim
n→∞

an(−p/q) = lim
n→∞

an(−p/q)
an(p/q)

an(p/q)

= lim
n→∞

(

1 −
(p/q)2

n2

)n
1

an(p/q)

= lim
n→∞

(1 − bn)n lim
n→∞

1

an(p/q)

=
1

ep/q

Here we have applied Theorem 7, the limit laws, and (6).

Theorem 8. The exponential function

(8) exp(x) = lim
n→∞

(

1 +
x

n

)n

is a well-defined real number for each x ∈ R. Moreover, for x, y ∈ R we have

(a) exp(x) > 0. In particular, x > 0 implies exp(x) > 1.

(b) exp(x) exp(−x) = 1

(c) exp(x) exp(y) = exp(x + y)

(d) x < y implies exp(x) < exp(y)

Note: We have already proven (8) for x ∈ Q.

Proof. Now let x > 0. Then by the Archimedean Property, there exists an N ∈ N such that N > x. Now
for each n ∈ N

an(x) =def
(

1 +
x

n

)n
<

(

1 +
N

n

)n

< eN < ∞
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Now by Lemma 5 an(x) is an increasing sequence. Hence, by the Monotone Convergence Theorem,

lim
n→∞

(

1 +
x

n

)n
= exp(x) ≤ eN

Also, for all n ∈ N

1 + n
x

n
≤

(

1 +
x

n

)n
(9)

by Bernoulli’s Inequality. Thus

1 < 1 + x ≤ lim
n→∞

(

1 +
x

n

)n
= exp(x)

since x is positive. Now by Theorem 7

exp(−x) = lim
n→∞

(

1 +
−x

n

)n

= lim
n→∞

(

1 −
x

n

)n
(

1 + x
n

)n

(

1 + x
n

)n

= lim
n→∞

(

1 −
x2

n2

)n
1

(

1 + x
n

)n

= lim
n→∞

(

1 −
x2

n2

)n

lim
n→∞

1
(

1 + x
n

)n

= 1 ·
1

exp(x)

This establishes (8) and parts (a) and (b). To prove (c), let x, y ∈ R. Then limn→∞ n(xy/n2) = 0 and by
Theorem 7(c) we have

exp(x) exp(y) = lim
n→∞

(

1 +
x

n

)n
lim

n→∞

(

1 +
y

n

)n

= lim
n→∞

(

1 +
x + y

n
+

xy

n2

)n

= lim
n→∞

(

1 +
x + y

n

)n

= exp(x + y)

To prove (d), let x < y. Then y − x > 0 and by parts (c) and (a)

exp(y) − exp(x) = exp(x)(exp(y − x) − 1) > 0

Motivated by this (and the results from Lemma 6), we make the following definition.

Definition. Let x ∈ R and let e represent Euler’s constant. We define ex by

(10) ex = exp(x)
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Properties of the Exponential Function

We first catalogue a few important inequalities.

Lemma 9.

(a) 1 + x ≤ ex for all x ∈ R, and

(b) ex ≤
1

1 − x
for x < 1.

Proof. We have equality in both when x = 0.

The inequality in part (a) is obvious if x ≤ −1 since the left-hand side is nonpositive. If x > −1 then
by (2)

(

1 +
x

n

)n
≥ 1 + n

x

n
= 1 + x

for all n ∈ N. Thus

ex = lim
n→∞

(

1 +
x

n

)n
≥ 1 + x

To prove part (b), suppose that x < 1. Then 1 − x > 0 and by part (a)

e−x ≥ 1 − x > 0

Rearranging, we obtain (b).

The following theorem is an immediate consequence of Lemma 9.

Theorem 10.

(a) lim
x→0

ex = 1

(b) lim
x→0

ex − 1

x
= 1

(c) lim
x→∞

ex = ∞ and lim
x→−∞

ex = 0.

Remark. Since e0 = 1, the limit in (a) says that the exponential function is continuous at the origin.

Proof. To prove part (a), observe that for all x ∈ (−1/2, 1/2) we have

(11) 1 + x ≤ ex ≤
1

1 − x

by Lemma 9. Now let x → 0 and invoke the Squeeze Law.
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To prove (b), notice that (11) implies

x ≤ ex − 1 ≤
1

1 − x
− 1 =

x

1 − x

Dividing by positive x yields

1 ≤
ex − 1

x
≤

1

1 − x

On the other hand, if x < 0 then we obtain the reverse inequality

1 ≥
ex − 1

x
≥

1

1 − x

Now let x → 0+ and x → 0− respectively in the above inequalities. Part (b) now follows by the Squeeze
Law.

Part (c) is an immediate consequence of Lemma 9. For example, let M > 0. Then
exp(M) ≥ M + 1 > M . The proof of the second limit is nearly as trivial.

The next 2 theorems make clear the importance of Theorem 10.

Theorem 11. The exponential function exp(x) is a continuous, strictly increasing function from R onto
(0, ∞).

Proof. We have already seen that the exponential function is strictly increasing (see Theorem 8). Now let
x ∈ R. Then by Theorem 10

lim
h→0

ex+h = lim
h→0

exeh = ex lim
h→0

eh = ex

In other words, the exponential function is continuous.

Finally, let L > 0. Then by Theorem 10(c), there exist real numbers a and b such that ea < L < eb. So
by the Intermediate Value Theorem there is a c ∈ (a, b) such that ec = L.

Theorem 12. The exponential function exp(x) is differentiable. In fact,

dex

dx
= ex

Proof. Let x ∈ R. Once again, by Theorem 10 we have

dex

dx
= lim

h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h
= ex lim

h→0

eh − 1

h
= ex

Now let x ∈ R. We are now able to define ax for arbitrary positive numbers a. Of course, 1x = 1.
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Definition. Now let a > 0, a 6= 1. By Theorem 11, there exists a real number c such that ec = a. For
each x ∈ R we define

(12) ax = exc = lim
n→∞

(

1 +
xc

n

)n

Note: c is called the (natural) logarithm of a and is denoted c = ln a.

Remark. It turns out that f(x) = ax is a differentiable function from R onto (0, ∞), and if a = ec then

dax

dx
= cax

Also, f is strictly increasing when a > 1. Otherwise, f is strictly decreasing.
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