Math 320

The Exponential Function

Summer 2015

The Exponential Function

In this section we will define the **Exponential** function by the rule

 $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$ (1)

Along the way, prove a collection of intermediate results, many of which are important in their own right.

Proposition 1. There exists a real number, 2 < e < 4 such that

$$\left(1+\frac{1}{n}\right)^n \nearrow e \text{ as } n \to \infty$$

Remark. The notation $b_n \nearrow b$ as $n \to \infty$ is shorthand for $b_n \le b_{n+1}$ and $\lim_{n\to\infty} b_n = b$.

The limit *e*, called **Euler's Constant**, can be approximated to a high degree of accuracy. For example,

 $e \approx 2.718281828459045235360287471352662497757247093699959$

to 50 decimal places.

Before we prove Proposition 1, we need a few intermediate results. If a > -1 then

(2)

 $(1+a)^n \ge 1+na,$

for $n \in \mathbb{N}$. This is known as **Bernoulli's Inequality**. We will prove this by induction on n. For n = 1we actually have equality. Now suppose that (2) holds for n = k. Then

$$(1+a)^{k+1} = (1+a)^k (1+a)$$

$$\geq (1+ka)(1+a), \qquad (\text{since } 1+a>0)$$

$$= 1+ka+a+ka^2$$

$$\geq 1+(k+1)a$$

Here the last inequality follows since $ka^2 \ge 0$ and (2) is established.

Lemma 2. For $n \in \mathbb{N}$ we have

(i) $(1+1/n)^n$ is increasing.

(ii) $(1+1/n)^{n+1}$ is decreasing.

(iii) $2 \le (1+1/n)^n < (1+1/n)^{n+1} \le 4$

Math 320 The Exponential Function Summer 2015

Proof. To prove (i) we let $b_n = (1 + 1/n)^n$. We need to show that $b_n < b_{n+1}$. Thus

$$\frac{b_{n+1}}{b_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} \\
= \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^{n+1}} \left(1 + \frac{1}{n}\right) \\
= \left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right)^{n+1} \left(1 + \frac{1}{n}\right) \\
= \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \left(1 + \frac{1}{n}\right) \\
\ge \left(1 - \frac{1}{n+1}\right) \left(1 + \frac{1}{n}\right), \quad (by (2)) \\
= 1 - \frac{1}{n+1} + \frac{1}{n} - \frac{1}{n(n+1)} \\
= 1$$

The proof of (ii) is similar. The middle inequality in (iii) is obvious since $(1 + n^{-1}) > 1$. Also, direct calculation and (i) shows that

$$2 = \left(1 + \frac{1}{1}\right)^1 = b_1 < b_n, \text{ for all } n \in \mathbb{N}$$

The right-hand inequality is obtained in a similar fashion.

Proof (of Proposition 1). This follows immediately from Lemma 2 and the Monotone Convergence Theorem.

Note: From Proposition 1 we see that

(3)
$$\left(1+\frac{1}{n}\right)^n < e, \quad \text{for all } n \in \mathbb{N}$$

Lemma 3. Let $n \in \mathbb{N}$ and $j \in \mathbb{Z}$ with $0 \leq j \leq n$. Then

(4)
$$\binom{n+1}{j} \frac{1}{(n+1)^j} \ge \binom{n}{j} \frac{1}{n^j}$$

Proof. Let b_n^j denote the right-hand side of (4). Then $b_n^0 = b_n^1 = 1$ for all $n \in \mathbb{N}$. Now for $1 < j \leq n$, a routine calculation yields

$$b_{n+1}^j - b_n^j = \frac{(n+1)!}{j!(n+1-j)!(n+1)^j n^j} \left[n^j - (n+1)^{j-1}(n+1-j) \right]$$

1

rjh

rjh

Math 320	The Exponential Function	Summer 2015
So it's enough to show	w the quantity in brackets is not less than 0. Now	
0	$j^{j-1}(n+1-j) = n^j - (n+1)^j + j(n+1)^{j-1}$	

$$= j(n+1)^{j} - \{n^{j} + n^{j} (n+1) + \dots + (n+1)^{j} \}$$

= $\{(n+1)^{j-1} - n^{j-1}\} + \{(n+1)^{j-1} - n^{j-2}(n+1)\} + \dots$
 $\dots + \{(n+1)^{j-1} - (n+1)^{j-1}\}$
 ≥ 0

since each of the braced quantities is nonnegative. This proves the lemma.

Proposition 4. A monotone sequence
$$\{b_n\}$$
 converges if and only if it contains a convergent subsequence.

Proof. The only if part is clear. Now suppose that $\{b_n\}$ is an increasing sequence with a convergent subsequence, say $\{b_{n_k}\}$ and let M > 0. If $\{b_n\}$ is not bounded above, then there is an $N \in \mathbb{N}$ such that $b_N > M$. It follows that for all $n \ge N$, $b_n \ge b_N > M$. Hence $\{b_{n_k}\}$ is not bounded above. This is impossible. The result now follows by the Monotone Convergence Theorem. □

Lemma 5. Let $x \ge 0$. Then for each $n \in \mathbb{N}$

(5)
$$\left(1+\frac{x}{n}\right)^n \le \left(1+\frac{x}{n+1}\right)^{n+1}$$

Proof. We clearly have equality when x = 0. Now suppose that x > 0 and let

$$a_n(x) = \left(1 + \frac{x}{n}\right)^n$$

From the Binomial Theorem and borrowing the notation from Lemma 3 we have

$$a_n(x) = \sum_{j=0}^n \binom{n}{j} \left(\frac{x}{n}\right)^j = \sum_{j=0}^n b_n^j x^j$$

Then

$$a_{n+1}(x) - a_n(x) = \sum_{j=0}^{n+1} b_{n+1}^j x^j - \sum_{j=0}^n b_n^j x^j$$
$$= \sum_{j=0}^n \left(b_{n+1}^j - b_n^j \right) x^j + \left(\frac{x}{n+1} \right)^{n+1}$$
$$\ge \sum_{j=0}^n \left(b_{n+1}^j - b_n^j \right) x^j$$
$$\ge 0$$

Here the last two lines follow from Lemma 3 and the fact $x^{j} > 0$. This establishes (5).

Math 320	The Exponential Function	Summer 2015
Lemma 6. Let $p, q \in \mathbb{N}$. Then		
(6)	$\lim_{n \to \infty} \left(1 + \frac{p/q}{n} \right)^n = e^{p/q}$	
(7)	$\lim_{n \to \infty} \left(1 - \frac{p/q}{n} \right)^n = e^{-p/q}$	

Proof. Let $p, q \in \mathbb{N}$ and define

 $a_n(x) = \left(1 + \frac{x}{n}\right)^n$

Also, let $a_n = a_n(1)$ and $k \in \mathbb{N}$. Then

$$a_{kq} = \left(1 + \frac{1}{kq}\right)^{kq} = \left(1 + \frac{p/q}{kp}\right)^{kq}$$

So by Proposition 1,

$$a_{kq} \to e$$
 as $k \to \infty$.

It follows that

3

$$\lim_{k \to \infty} a_{kp} \left(p/q \right) = \lim_{k \to \infty} \left(1 + \frac{p/q}{kp} \right)^{kp}$$
$$= \lim_{k \to \infty} \left\{ \left(1 + \frac{1}{kq} \right)^{kq} \right\}^{p/q}$$
$$= \lim_{k \to \infty} \left(a_{n_k} \right)^{p/q}$$
$$= e^{p/q}$$

Thus $a_{kp}(p/q)$ is a convergent subsequence of the increasing sequence $a_n(p/q)$. Hence (6) now follows by Proposition 4.

 $\left(1 + \frac{p/q}{n}\right)^n < e^{p/q}$

The limit in (7) is an easy consequence of the next theorem.

Remark. As we saw above,

for all $n \in \mathbb{N}$.

Theorem 7. Suppose that $b_n \ge 0$ for each $n \in \mathbb{N}$ and that $\lim_{n\to\infty} nb_n = 0$. Then

a)
$$\lim_{n \to \infty} (1 + b_n)^n = 1$$
, and
b) $\lim_{n \to \infty} (1 - b_n)^n = 1$.

In addition, suppose that $\lim_{n\to\infty}a_n=0$ and that $\lim_{n\to\infty}(1+a_n)^n$ is finite. Then rjh

Math 320 The Exponential Function

(c) $\lim_{n \to \infty} (1 + a_n + b_n)^n = \lim_{n \to \infty} (1 + a_n)^n$

Proof. Let $1 > \varepsilon > 0$. Then there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $nb_n = |nb_n| < \varepsilon/2$. Using the Binomial Theorem we see that

$$1 \le (1+b_n)^n = 1 + \binom{n}{1}b_n + \binom{n}{2}b_n^2 + \dots + b_n^n$$
$$= 1 + nb_n + \frac{n(n-1)}{2}b_n^2 + \dots + b_n^n$$
$$= 1 + nb_n + \frac{n(n-1)}{2}b_n^2 + \dots + b_n^n$$

Hence $n \ge N$ implies

$$(1+b_n)^n < 1 + \frac{n}{n}\frac{\varepsilon}{2} + \frac{n(n-1)}{2n^2}\frac{\varepsilon^2}{2^2} + \dots + \frac{1}{n^n}\frac{\varepsilon^n}{2^n}$$
$$< 1 + \frac{\varepsilon}{2} + \frac{\varepsilon}{2^2} + \dots + \frac{\varepsilon}{2^n}$$
$$= 1 + \varepsilon \sum_{j=1}^n \frac{1}{2^j}$$
$$< 1 + \varepsilon$$

In other words, for all $n \geq N$

$$|(1+b_n)^n - 1| < \varepsilon$$

and part (a) is established.

To prove (b), let $c_n = b_n/(1 - b_n)$. Then by the limit laws

$$\lim_{n \to \infty} nc_n = \lim_{n \to \infty} \frac{nb_n}{1 - b_n} = \frac{\lim_{n \to \infty} nb_n}{1 - \lim_{n \to \infty} b_n} = \frac{0}{1 - 0}$$

Now by (a) we have

$$\lim_{n \to \infty} (1 - b_n)^{-n} = \lim_{n \to \infty} \left(\frac{1}{1 - b_n}\right)^n$$
$$= \lim_{n \to \infty} \left(\frac{1 - b_n}{1 - b_n} + \frac{b_n}{1 - b_n}\right)$$
$$= \lim_{n \to \infty} (1 + c_n)^n = 1$$

Once again, by the limit laws

$$\lim_{n \to \infty} (1 - b_n)^n = \left(\lim_{n \to \infty} (1 - b_n)^{-n}\right)^{-1} = 1$$

rjh

Summer 2015

To prove part (c), notice that $1 + a_n \neq 0$ for n sufficiently large and hence

$$\lim_{n \to \infty} n \, \frac{b_n}{1 + a_n} = \lim_{n \to \infty} \frac{n b_n}{1 + a_n} = 0$$

So by part (a) and the limit laws

Summer 2015

$$\lim_{n \to \infty} (1 + a_n + b_n)^n = \lim_{n \to \infty} (1 + a_n)^n \left(1 + \frac{b_n}{1 + a_n} \right)^n$$
$$= \lim_{n \to \infty} (1 + a_n)^n \lim_{n \to \infty} \left(1 + \frac{b_n}{1 + a_n} \right)^n$$
$$= \lim_{n \to \infty} (1 + a_n)^n$$

Now to prove (7), let
$$b_n = \frac{(p/q)^2}{n^2}$$
. Then $\lim_{n \to \infty} nb_n = 0$ and hence,

$$\lim_{n \to \infty} a_n(-p/q) = \lim_{n \to \infty} a_n(-p/q) \frac{a_n(p/q)}{a_n(p/q)}$$

$$= \lim_{n \to \infty} \left(1 - \frac{(p/q)^2}{n^2}\right)^n \frac{1}{a_n(p/q)}$$

$$= \lim_{n \to \infty} (1 - b_n)^n \lim_{n \to \infty} \frac{1}{a_n(p/q)}$$

$$= \frac{1}{e^{p/q}}$$

Here we have applied Theorem 7, the limit laws, and (6).

Theorem 8. The exponential function

(8)
$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

is a well-defined real number for each $x\in\mathbb{R}.$ Moreover, for $x,y\in\mathbb{R}$ we have

(a) $\exp(x) > 0$. In particular, x > 0 implies $\exp(x) > 1$.

(b) $\exp(x) \exp(-x) = 1$

(c) $\exp(x)\exp(y) = \exp(x+y)$

(d) x < y implies $\exp(x) < \exp(y)$

Note: We have already proven (8) for $x \in \mathbb{Q}$.

Proof. Now let x > 0. Then by the Archimedean Property, there exists an $N \in \mathbb{N}$ such that N > x. Now for each $n \in \mathbb{N}$

$$a_n(x) = ^{\operatorname{def}} \left(1 + \frac{x}{n}\right)^n < \left(1 + \frac{N}{n}\right)^n < e^N < \infty$$

rjh

6

Also, for all $n \in \mathbb{N}$

Theorem 7(c) we have

by Bernoulli's Inequality. Thus

since x is positive. Now by Theorem 7

(9)

The Exponential Function

 $1 < 1 + x \le \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \exp(x)$

Now by Lemma 5 $a_n(x)$ is an increasing sequence. Hence, by the Monotone Convergence Theorem, $\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \exp(x) \le e^N$

 $1+n\frac{x}{n} \leq \left(1+\frac{x}{n}\right)^n$

 $\exp(-x) = \lim_{n \to \infty} \left(1 + \frac{-x}{n} \right)^n = \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n \frac{\left(1 + \frac{x}{n} \right)^n}{\left(1 + \frac{x}{n} \right)^n}$

 $=\lim_{n\to\infty}\left(1-\frac{x^2}{n^2}\right)^n\frac{1}{\left(1+\frac{x}{n}\right)^n}$

 $=\lim_{n\to\infty} \left(1-\frac{x^2}{n^2}\right)^n \lim_{n\to\infty} \frac{1}{\left(1+\frac{x}{n}\right)^n}$

This establishes (8) and parts (a) and (b). To prove (c), let $x, y \in \mathbb{R}$. Then $\lim_{n\to\infty} n(xy/n^2) = 0$ and by

 $\exp(x)\exp(y) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \lim_{n \to \infty} \left(1 + \frac{y}{n}\right)^n$

 $=\lim_{n\to\infty}\left(1+\frac{x+y}{n}+\frac{xy}{n^2}\right)^n$

 $=\lim_{n\to\infty}\left(1+\frac{x+y}{n}\right)^n$

Summer 2015

Math 320

The Exponential Function

Summer 2015

Properties of the Exponential Function

We first catalogue a few important inequalities.

Lemma 9.

(a)
$$1 + x \le e^x$$
 for all $x \in \mathbb{R}$, and

(b)
$$e^x \le \frac{1}{1-x}$$
 for $x < 1$.

Proof. We have equality in both when x = 0.

The inequality in part (a) is obvious if $x \leq -1$ since the left-hand side is nonpositive. If x > -1 then by (2)

$$\left(1+\frac{x}{n}\right)^n \ge 1+n\frac{x}{n} = 1+x$$

for all $n \in \mathbb{N}$. Thus

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \ge 1 + x$$

To prove part (b), suppose that x < 1. Then 1 - x > 0 and by part (a)

$$e^{-x} \ge 1 - x > 0$$

Rearranging, we obtain (b).

The following theorem is an immediate consequence of Lemma 9.

Theorem 10.

(a)
$$\lim_{x \to 0} e^x = 1$$

(b) $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
(c) $\lim_{x \to \infty} e^x = \infty$ and $\lim_{x \to -\infty} e^x = 0$.

Remark. Since $e^0 = 1$, the limit in (a) says that the exponential function is continuous at the origin.

Proof. To prove part (a), observe that for all $x \in (-1/2, 1/2)$ we have

by Lemma 9. Now let $x \to 0$ and invoke the Squeeze Law.

(10)rjh

8

 $e^x = \exp(x)$

7

- Motivated by this (and the results from Lemma 6), we make the following definition.
- **Definition.** Let $x \in \mathbb{R}$ and let *e* represent Euler's constant. We define e^x by

To prove (d), let x < y. Then y - x > 0 and by parts (c) and (a)

 $= 1 \cdot \frac{1}{\exp(x)}$

$$\exp(y) - \exp(x) = \exp(x)(\exp(y - x) - 1) > 0$$

 $=\exp(x+y)$

Math 320The Exponential Function Summer 2015

To prove (b), notice that (11) implies

$$x \le e^x - 1 \le \frac{1}{1 - x} - 1 = \frac{x}{1 - x}$$

x

Dividing by positive x yields

$$1 \le \frac{e^x - 1}{x} \le \frac{1}{1 - x}$$

On the other hand, if x < 0 then we obtain the reverse inequality

$$1 \ge \frac{e^x - 1}{x} \ge \frac{1}{1 - x}$$

Now let $x \to 0^+$ and $x \to 0^-$ respectively in the above inequalities. Part (b) now follows by the Squeeze Law.

Part (c) is an immediate consequence of Lemma 9. For example, let M > 0. Then $\exp(M) \ge M + 1 > M$. The proof of the second limit is nearly as trivial.

The next 2 theorems make clear the importance of Theorem 10.

Theorem 11. The exponential function $\exp(x)$ is a continuous, strictly increasing function from \mathbb{R} onto $(0,\infty).$

Proof. We have already seen that the exponential function is strictly increasing (see Theorem 8). Now let $x \in \mathbb{R}$. Then by Theorem 10

$$\lim_{h \to 0} e^{x+h} = \lim_{h \to 0} e^x e^h = e^x \lim_{h \to 0} e^h = e^x$$

In other words, the exponential function is continuous.

Finally, let L > 0. Then by Theorem 10(c), there exist real numbers a and b such that $e^a < L < e^b$. So by the Intermediate Value Theorem there is a $c \in (a, b)$ such that $e^c = L$.

Theorem 12. The exponential function $\exp(x)$ is differentiable. In fact,

$$\frac{de^x}{dx} = e^x$$

Proof. Let $x \in \mathbb{R}$. Once again, by Theorem 10 we have

$$\frac{de^x}{dx} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x e^h - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x$$

Now let $x \in \mathbb{R}$. We are now able to define a^x for arbitrary positive numbers a. Of course, $1^x = 1$.

Math 320

The Exponential Function

Summer 2015

Definition. Now let $a > 0, a \neq 1$. By Theorem 11, there exists a real number c such that $e^c = a$. For each $x \in \mathbb{R}$ we define

(12)
$$a^{x} = e^{xc} = \lim_{n \to \infty} \left(1 + \frac{xc}{n} \right)^{n}$$

Note: c is called the (natural) logarithm of a and is denoted $c = \ln a$.

Remark. It turns out that $f(x) = a^x$ is a differentiable function from \mathbb{R} onto $(0, \infty)$, and if $a = e^c$ then

$$\frac{da^x}{dx} = ca^x$$

Also, f is strictly increasing when a > 1. Otherwise, f is strictly decreasing.

rjh

9

rjh