The Exponential Function

In this section we will define the Exponential function by the rule

$$
\begin{equation*}
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \tag{1}
\end{equation*}
$$

Along the way, prove a collection of intermediate results, many of which are important in their own right.
Proposition 1. There exists a real number, $2<e<4$ such that

$$
\left(1+\frac{1}{n}\right)^{n} \nearrow e \text { as } n \rightarrow \infty
$$

Remark. The notation $b_{n} \nearrow b$ as $n \rightarrow \infty$ is shorthand for $b_{n} \leq b_{n+1}$ and $\lim _{n \rightarrow \infty} b_{n}=b$.
The limit e, called Euler's Constant, can be approximated to a high degree of accuracy. For example,

$$
e \approx 2.718281828459045235360287471352662497757247093699959
$$

to 50 decimal places
Before we prove Proposition 1, we need a few intermediate results. If $a>-1$ then (2)

$$
(1+a)^{n} \geq 1+n a,
$$

for $n \in \mathbb{N}$. This is known as Bernoulli's Inequality. We will prove this by induction on n. For $n=1$ we actually have equality. Now suppose that (2) holds for $n=k$. Then

$$
\begin{aligned}
(1+a)^{k+1} & =(1+a)^{k}(1+a) \\
& \geq(1+k a)(1+a), \quad \quad(\text { since } 1+a>0) \\
& =1+k a+a+k a^{2} \\
& \geq 1+(k+1) a
\end{aligned}
$$

Here the last inequality follows since $k a^{2} \geq 0$ and (2) is established.
Lemma 2. For $n \in \mathbb{N}$ we have
(i) $(1+1 / n)^{n}$ is increasing.
(ii) $(1+1 / n)^{n+1}$ is decreasing.
(iii) $2 \leq(1+1 / n)^{n}<(1+1 / n)^{n+1} \leq 4$

Math 320
The Exponential Function
Summer 2015
Proof. To prove (i) we let $b_{n}=(1+1 / n)^{n}$. We need to show that $b_{n}<b_{n+1}$. Thus

$$
\begin{aligned}
\frac{b_{n+1}}{b_{n}} & =\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}} \\
& =\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n+1}}\left(1+\frac{1}{n}\right) \\
& =\left(\frac{n^{2}+2 n}{n^{2}+2 n+1}\right)^{n+1}\left(1+\frac{1}{n}\right) \\
& =\left(1-\frac{1}{(n+1)^{2}}\right)^{n+1}\left(1+\frac{1}{n}\right) \\
& \geq\left(1-\frac{1}{n+1}\right)\left(1+\frac{1}{n}\right) \\
& =1-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n(n+1)} \\
& =1
\end{aligned}
$$

The proof of (ii) is similar. The middle inequality in (iii) is obvious since $\left(1+n^{-1}\right)>1$. Also, direct calculation and (i) shows that

$$
2=\left(1+\frac{1}{1}\right)^{1}=b_{1}<b_{n}, \text { for all } n \in \mathbb{N}
$$

The right-hand inequality is obtained in a similar fashion.
Proof (of Proposition 1). This follows immediately from Lemma 2 and the Monotone Convergence Theorem.

Note: From Proposition 1 we see that

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}<e, \quad \text { for all } n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Lemma 3. Let $n \in \mathbb{N}$ and $j \in \mathbb{Z}$ with $0 \leq j \leq n$. Then

$$
\begin{equation*}
\binom{n+1}{j} \frac{1}{(n+1)^{j}} \geq\binom{ n}{j} \frac{1}{n^{j}} \tag{4}
\end{equation*}
$$

Proof. Let b_{n}^{j} denote the right-hand side of (4). Then $b_{n}^{0}=b_{n}^{1}=1$ for all $n \in \mathbb{N}$. Now for $1<j \leq n$, a routine calculation yields

$$
b_{n+1}^{j}-b_{n}^{j}=\frac{(n+1)!}{j!(n+1-j)!(n+1)^{j} n^{j}}\left[n^{j}-(n+1)^{j-1}(n+1-j)\right]
$$

Math 320
The Exponential Function

So it's enough to show the quantity in brackets is not less than 0 . Now

$$
\begin{aligned}
n^{j}-(n+1)^{j-1}(n+1-j)= & n^{j}-(n+1)^{j}+j(n+1)^{j-1} \\
= & j(n+1)^{j-1}-\left\{n^{j-1}+n^{j-2}(n+1)+\cdots+(n+1)^{j-1}\right\} \\
= & \left\{(n+1)^{j-1}-n^{j-1}\right\}+\left\{(n+1)^{j-1}-n^{j-2}(n+1)\right\}+\cdots \\
& \cdots+\left\{(n+1)^{j-1}-(n+1)^{j-1}\right\}
\end{aligned}
$$

≥ 0
since each of the braced quantities is nonnegative. This proves the lemma.

Proposition 4. A monotone sequence $\left\{b_{n}\right\}$ converges if and only if it contains a convergent subsequence.

Proof. The only if part is clear. Now suppose that $\left\{b_{n}\right\}$ is an increasing sequence with a convergent subsequence, say $\left\{b_{n_{k}}\right\}$ and let $M>0$. If $\left\{b_{n}\right\}$ is not bounded above, then there is an $N \in \mathbb{N}$ such that $b_{N}>M$. It follows that for all $n \geq N, b_{n} \geq b_{N}>M$. Hence $\left\{b_{n_{k}}\right\}$ is not bounded above. This is impossible. The result now follows by the Monotone Convergence Theorem.

Lemma 5. Let $x \geq 0$. Then for each $n \in \mathbb{N}$

$$
\begin{equation*}
\left(1+\frac{x}{n}\right)^{n} \leq\left(1+\frac{x}{n+1}\right)^{n+1} \tag{5}
\end{equation*}
$$

Proof. We clearly have equality when $x=0$. Now suppose that $x>0$ and let

$$
a_{n}(x)=\left(1+\frac{x}{n}\right)^{n}
$$

From the Binomial Theorem and borrowing the notation from Lemma 3 we have

$$
a_{n}(x)=\sum_{j=0}^{n}\binom{n}{j}\left(\frac{x}{n}\right)^{j}=\sum_{j=0}^{n} b_{n}^{j} x^{j}
$$

Then

$$
\begin{aligned}
a_{n+1}(x)-a_{n}(x) & =\sum_{j=0}^{n+1} b_{n+1}^{j} x^{j}-\sum_{j=0}^{n} b_{n}^{j} x^{j} \\
& =\sum_{j=0}^{n}\left(b_{n+1}^{j}-b_{n}^{j}\right) x^{j}+\left(\frac{x}{n+1}\right)^{n+1} \\
& \geq \sum_{j=0}^{n}\left(b_{n+1}^{j}-b_{n}^{j}\right) x^{j} \\
& \geq 0
\end{aligned}
$$

Here the last two lines follow from Lemma 3 and the fact $x^{j}>0$. This establishes (5).

Math 320
The Exponential Function

Lemma 6. Let $p, q \in \mathbb{N}$. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left(1+\frac{p / q}{n}\right)^{n}=e^{p / q} \tag{6}\\
& \lim _{n \rightarrow \infty}\left(1-\frac{p / q}{n}\right)^{n}=e^{-p / q}
\end{align*}
$$

Proof. Let $p, q \in \mathbb{N}$ and define

$$
a_{n}(x)=\left(1+\frac{x}{n}\right)^{n}
$$

Also, let $a_{n}=a_{n}(1)$ and $k \in \mathbb{N}$. Then

$$
a_{k q}=\left(1+\frac{1}{k q}\right)^{k q}=\left(1+\frac{p / q}{k p}\right)^{k q}
$$

So by Proposition 1

$$
a_{k q} \rightarrow e \quad \text { as } \quad k \rightarrow \infty .
$$

It follows that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} a_{k p}(p / q) & =\lim _{k \rightarrow \infty}\left(1+\frac{p / q}{k p}\right)^{k p} \\
& =\lim _{k \rightarrow \infty}\left\{\left(1+\frac{1}{k q}\right)^{k q}\right\}^{p / q} \\
& =\lim _{k \rightarrow \infty}\left(a_{n_{k}}\right)^{p / q} \\
& =e^{p / q}
\end{aligned}
$$

Thus $a_{k p}(p / q)$ is a convergent subsequence of the increasing sequence $a_{n}(p / q)$. Hence (6) now follows by Proposition 4.

The limit in (7) is an easy consequence of the next theorem.

Remark. As we saw above,

$$
\left(1+\frac{p / q}{n}\right)^{n}<e^{p / q}
$$

for all $n \in \mathbb{N}$.

Theorem 7. Suppose that $b_{n} \geq 0$ for each $n \in \mathbb{N}$ and that $\lim _{n \rightarrow \infty} n b_{n}=0$. Then
(a) $\lim _{n \rightarrow \infty}\left(1+b_{n}\right)^{n}=1$, and
(b) $\lim _{n \rightarrow \infty}\left(1-b_{n}\right)^{n}=1$.

In addition, suppose that $\lim _{n \rightarrow \infty} a_{n}=0$ and that $\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{n}$ is finite. Then

Math 320
The Exponential Function
(c) $\lim _{n \rightarrow \infty}\left(1+a_{n}+b_{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{n}$

Proof. Let $1>\varepsilon>0$. Then there is an $N \in \mathbb{N}$ such that $n \geq N$ implies $n b_{n}=\left|n b_{n}\right|<\varepsilon / 2$. Using the Binomial Theorem we see that

$$
\begin{aligned}
1 \leq\left(1+b_{n}\right)^{n} & =1+\binom{n}{1} b_{n}+\binom{n}{2} b_{n}^{2}+\cdots+b_{n}^{n} \\
& =1+n b_{n}+\frac{n(n-1)}{2} b_{n}^{2}+\cdots+b_{n}^{n} \\
& =1+
\end{aligned}
$$

Hence $n \geq N$ implies

$$
\begin{aligned}
\left(1+b_{n}\right)^{n} & <1+\frac{n}{n} \frac{\varepsilon}{2}+\frac{n(n-1)}{2 n^{2}} \frac{\varepsilon^{2}}{2^{2}}+\cdots+\frac{1}{n^{n}} \frac{\varepsilon^{n}}{2^{n}} \\
& <1+\frac{\varepsilon}{2}+\frac{\varepsilon}{2^{2}}+\cdots+\frac{\varepsilon}{2^{n}} \\
& =1+\varepsilon \sum_{j=1}^{n} \frac{1}{2^{j}} \\
& <1+\varepsilon
\end{aligned}
$$

In other words, for all $n \geq N$

$$
\left|\left(1+b_{n}\right)^{n}-1\right|<\varepsilon
$$

and part (a) is established.
To prove (b), let $c_{n}=b_{n} /\left(1-b_{n}\right)$. Then by the limit laws

$$
\lim _{n \rightarrow \infty} n c_{n}=\lim _{n \rightarrow \infty} \frac{n b_{n}}{1-b_{n}}=\frac{\lim _{n \rightarrow \infty} n b_{n}}{1-\lim _{n \rightarrow \infty} b_{n}}=\frac{0}{1-0}
$$

Now by (a) we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1-b_{n}\right)^{-n} & =\lim _{n \rightarrow \infty}\left(\frac{1}{1-b_{n}}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1-b_{n}}{1-b_{n}}+\frac{b_{n}}{1-b_{n}}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(1+c_{n}\right)^{n}=1
\end{aligned}
$$

Once again, by the limit laws

$$
\lim _{n \rightarrow \infty}\left(1-b_{n}\right)^{n}=\left(\lim _{n \rightarrow \infty}\left(1-b_{n}\right)^{-n}\right)^{-1}=1
$$

Math 320

To prove part (c), notice that $1+a_{n} \neq 0$ for n sufficiently large and hence

$$
\lim _{n \rightarrow \infty} n \frac{b_{n}}{1+a_{n}}=\lim _{n \rightarrow \infty} \frac{n b_{n}}{1+a_{n}}=0
$$

So by part (a) and the limit laws

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+a_{n}+b_{n}\right)^{n} & =\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{n}\left(1+\frac{b_{n}}{1+a_{n}}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{n} \lim _{n \rightarrow \infty}\left(1+\frac{b_{n}}{1+a_{n}}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{n}
\end{aligned}
$$

Now to prove (7), let $b_{n}=\frac{(p / q)^{2}}{n^{2}}$. Then $\lim _{n \rightarrow \infty} n b_{n}=0$ and hence,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}(-p / q) & =\lim _{n \rightarrow \infty} a_{n}(-p / q) \frac{a_{n}(p / q)}{a_{n}(p / q)} \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{(p / q)^{2}}{n^{2}}\right)^{n} \frac{1}{a_{n}(p / q)} \\
& =\lim _{n \rightarrow \infty}\left(1-b_{n}\right)^{n} \lim _{n \rightarrow \infty} \frac{1}{a_{n}(p / q)} \\
& =\frac{1}{e^{p / q}}
\end{aligned}
$$

Here we have applied Theorem 7, the limit laws, and (6).
Theorem 8. The exponential function

$$
\begin{equation*}
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \tag{8}
\end{equation*}
$$

is a well-defined real number for each $x \in \mathbb{R}$. Moreover, for $x, y \in \mathbb{R}$ we have
(a) $\exp (x)>0$. In particular, $x>0$ implies $\exp (x)>1$.
(b) $\exp (x) \exp (-x)=1$
(c) $\exp (x) \exp (y)=\exp (x+y)$
(d) $x<y$ implies $\exp (x)<\exp (y)$

Note: We have already proven (8) for $x \in \mathbb{Q}$.

Proof. Now let $x>0$. Then by the Archimedean Property, there exists an $N \in \mathbb{N}$ such that $N>x$. Now for each $n \in \mathbb{N}$

$$
a_{n}(x)=\operatorname{def}\left(1+\frac{x}{n}\right)^{n}<\left(1+\frac{N}{n}\right)^{n}<e^{N}<\infty
$$

Math 320
The Exponential Function
Summer 2015

Now by Lemma $5 a_{n}(x)$ is an increasing sequence. Hence, by the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\exp (x) \leq e^{N}
$$

Also, for all $n \in \mathbb{N}$
(9)

$$
1+n \frac{x}{n} \leq\left(1+\frac{x}{n}\right)^{n}
$$

by Bernoulli's Inequality. Thus

$$
1<1+x \leq \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\exp (x)
$$

since x is positive. Now by Theorem 7

$$
\begin{aligned}
\exp (-x) & =\lim _{n \rightarrow \infty}\left(1+\frac{-x}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n} \frac{\left(1+\frac{x}{n}\right)^{n}}{\left(1+\frac{x}{n}\right)^{n}} \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n} \frac{1}{\left(1+\frac{x}{n}\right)^{n}} \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n} \lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{x}{n}\right)^{n}} \\
& =1 \cdot \frac{1}{\exp (x)}
\end{aligned}
$$

This establishes (8) and parts (a) and (b). To prove (c), let $x, y \in \mathbb{R}$. Then $\lim _{n \rightarrow \infty} n\left(x y / n^{2}\right)=0$ and by Theorem 7(c) we have

$$
\begin{aligned}
\exp (x) \exp (y) & =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \lim _{n \rightarrow \infty}\left(1+\frac{y}{n}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{x+y}{n}+\frac{x y}{n^{2}}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{x+y}{n}\right)^{n} \\
& =\exp (x+y)
\end{aligned}
$$

To prove (d), let $x<y$. Then $y-x>0$ and by parts (c) and (a)

$$
\exp (y)-\exp (x)=\exp (x)(\exp (y-x)-1)>0
$$

Motivated by this (and the results from Lemma 6), we make the following definition.
Definition. Let $x \in \mathbb{R}$ and let e represent Euler's constant. We define e^{x} by

$$
e^{x}=\exp (x)
$$

Math 320
The Exponential Function

Properties of the Exponential Function

We first catalogue a few important inequalities.
Lemma 9.
(a) $1+x \leq e^{x} \quad$ for all $x \in \mathbb{R}$, and
(b) $e^{x} \leq \frac{1}{1-x}$ for $x<1$.

Proof. We have equality in both when $x=0$.
The inequality in part (a) is obvious if $x \leq-1$ since the left-hand side is nonpositive. If $x>-1$ then by (2)

$$
\left(1+\frac{x}{n}\right)^{n} \geq 1+n \frac{x}{n}=1+x
$$

for all $n \in \mathbb{N}$. Thus

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \geq 1+x
$$

To prove part (b), suppose that $x<1$. Then $1-x>0$ and by part (a)

$$
e^{-x} \geq 1-x>0
$$

Rearranging, we obtain (b).

The following theorem is an immediate consequence of Lemma 9 .
Theorem 10.
(a) $\lim _{x \rightarrow 0} e^{x}=1$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(c) $\lim _{x \rightarrow \infty} e^{x}=\infty$ and $\lim _{x \rightarrow-\infty} e^{x}=0$.

Remark. Since $e^{0}=1$, the limit in (a) says that the exponential function is continuous at the origin.

Proof. To prove part (a), observe that for all $x \in(-1 / 2,1 / 2)$ we have

$$
\begin{equation*}
1+x \leq e^{x} \leq \frac{1}{1-x} \tag{11}
\end{equation*}
$$

by Lemma 9. Now let $x \rightarrow 0$ and invoke the Squeeze Law.
rjh

Math 320
The Exponential Function

To prove (b), notice that (11) implies

$$
x \leq e^{x}-1 \leq \frac{1}{1-x}-1=\frac{x}{1-x}
$$

Dividing by positive x yields

$$
1 \leq \frac{e^{x}-1}{x} \leq \frac{1}{1-x}
$$

On the other hand, if $x<0$ then we obtain the reverse inequality

$$
1 \geq \frac{e^{x}-1}{x} \geq \frac{1}{1-x}
$$

Now let $x \rightarrow 0^{+}$and $x \rightarrow 0^{-}$respectively in the above inequalities. Part (b) now follows by the Squeeze Law.

Part (c) is an immediate consequence of Lemma 9. For example, let $M>0$. Then $\exp (M) \geq M+1>M$. The proof of the second limit is nearly as trivial.

The next 2 theorems make clear the importance of Theorem 10 .
Theorem 11. The exponential function $\exp (x)$ is a continuous, strictly increasing function from \mathbb{R} onto $(0, \infty)$.

Proof. We have already seen that the exponential function is strictly increasing (see Theorem 8). Now let $x \in \mathbb{R}$. Then by Theorem 10

$$
\lim _{h \rightarrow 0} e^{x+h}=\lim _{h \rightarrow 0} e^{x} e^{h}=e^{x} \lim _{h \rightarrow 0} e^{h}=e^{x}
$$

In other words, the exponential function is continuous.
Finally, let $L>0$. Then by Theorem 10(c), there exist real numbers a and b such that $e^{a}<L<e^{b}$. So by the Intermediate Value Theorem there is a $c \in(a, b)$ such that $e^{c}=L$.
Theorem 12. The exponential function $\exp (x)$ is differentiable. In fact,

$$
\frac{d e^{x}}{d x}=e^{x}
$$

Proof. Let $x \in \mathbb{R}$. Once again, by Theorem 10 we have

$$
\frac{d e^{x}}{d x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x}
$$

Now let $x \in \mathbb{R}$. We are now able to define a^{x} for arbitrary positive numbers a. Of course, $1^{x}=1$.

