Name:
 PID:
 Section:

Instructions. Grading is based on method. Show all work.

- 1. Suppose that $b_n \ge 0$ for each $n \in \mathbb{N}$ and that $\lim_{n \to \infty} nb_n = 0$.
 - (a) (5 points) Show that

$$\lim_{n \to \infty} (1 + b_n)^n = 1 \tag{1}$$

Note: l'Hôpital's rule is of no help here.

(b) (5 points) Show that

$$\lim_{n\to\infty}(1-b_n)^n=1$$

Hint: Let $a_n = b_n (1 - b_n)^{-1}$. First observe that $\lim_{n \to \infty} na_n = 0$. Since $a_n \ge 0$ for n sufficiently large, we can use part (1a) on the sequence $(1 + a_n)^n$.

- 2. For each $k, n \in \mathbb{N}$, let $f_n(x, k) = \frac{\sqrt{n}x^k}{1 + nx^2}$, $x \in I = [0, 1]$.
 - (a) (5 points) Show that $f_n(\cdot, 1) \to 0$ uniformly on *I*. That is, show that $\frac{\sqrt{n}x^1}{1 + nx^2} \to 0$ uniformly on [0, 1].

(b) For each $k \in \mathbb{N}$, show that $f_n(\cdot, k) \to 0$ uniformly on *I*. (*Hint:* Part (a) may help.)