Verify the limit below without using Stirling's Formula.

$$
\lim _{n \rightarrow \infty} \frac{(2 n)!}{4^{n} n!n!}=0
$$

Proof. Let $a_{n}=(2 n)!/\left(4^{n} n!n!\right)$. An easy calculation shows that

$$
\rho_{n}={ }^{\text {def }} \frac{a_{n}}{a_{n-1}}=\frac{2 n-1}{2 n}=1-\frac{1}{2 n}
$$

Thus

$$
a_{n-1}>\left(1-\frac{1}{2 n}\right) a_{n-1}=a_{n}
$$

So $\left\{a_{n}\right\}$ is a decreasing sequence of positive numbers, and hence, it converges by the Monotone Convergence Theorem.

By the Binomial Theorem,

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =\sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{n}\right)^{j} \\
& =1+\binom{n}{1} \frac{1}{n}+\binom{n}{2} \frac{1}{n^{2}}+\cdots+\binom{n}{n-1} \frac{1}{n^{n-1}}+\frac{1}{n^{n}} \\
& =1+1+\text { positive terms } \\
& >2
\end{aligned}
$$

It follows that

$$
2^{1 / n}<1+\frac{1}{n}=\frac{n+1}{n}
$$

or

$$
2^{-1 / n}>\frac{n}{n+1}=1-\frac{1}{n+1}
$$

Thus

$$
\rho_{n}=1-\frac{1}{2 n}<2^{-1 /(2 n-1)}<2^{-1 / 2 n}
$$

Notice that $a_{0}=1$ and write

$$
\begin{aligned}
a_{n} & =\frac{a_{n}}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{2}}{a_{1}} \frac{a_{1}}{a_{0}} a_{0} \\
& =\rho_{n} \rho_{n-1} \cdots \rho_{2} \rho_{1} \\
& <2^{-1 /(2 n)} 2^{-1 /(2 n-2)} \cdots 2^{-1 / 4} 2^{-1 / 2} \\
& =2^{\frac{-1}{2} \sum_{j=1}^{n} \frac{1}{j}}
\end{aligned}
$$

Since the Harmonic Series diverges to positive infinity, we see that the last expression approaches 0 as $n \rightarrow \infty$. Hence the result follows by the Squeeze Law.

