Math 320	Exam 2- Sample	Summer 2015	Math 320	Exam 2- Sample	Summer 2015
Throughout this exam you may assum	ne that $A\subseteq \mathbb{R}$ is never the empty set.		3. (15 points)		
 (10 points) Let {a_n} and {b_n} be s converges and lim sup b_n < ∞. Pr 	sequences of positive real numbers. Suppose ove that $\sum_{n=1}^{\infty} a_n b_n$ converges.	e that $\sum_{n=1}^{\infty} a_n$	(a) <i>Carefully</i> state	the Intermediate Value Theorem.	
			(b) Let $f : [0, 1] \rightarrow$ point $c \in [0, 1]$ <i>Hint:</i> Conside	\mathbb{R} be a continuous function such that $f(0) = f(1)$. P (2) such that $f(c) = f(c + 1/2)$. the function $g(x) = f(x) - f(x + 1/2)$.	rove that there exists a
2. (15 points) Use an ε - δ argument t	o prove that $f(x) = x^2 + 3x$ is continuous at	: 4.	 4. (10 points) Let f : A sequence. Prove th Warning: You can n 	$A \to \mathbb{R}$ be uniformly continuous. Suppose that $\{x_n\} \in \{f(x_n)\}$ is a bounded sequence. ot assume that $\lim_{n\to\infty} x_n = c \in A$ since A is not nec	□ <i>A</i> is a convergent essarily closed.
rjh	1	Form C	rjh	2	Form C

Math 320	Exam 2- Sample	Summer 2015	Math 320	Exam 2- Sample	Summer 2015
 Math 320 5. (15 points) <i>Carefully</i> state increasing sequence of response of the sequence of response of the sequence of the	Exam 2- Sample e the Axiom of Completeness, and use it to prove eal numbers has a limit. us of convergence and give the exact interval of $\sum_{n=1}^{\infty} \frac{3^n}{n^2} x^n$	e that every bounded	Math 320 7. (10 points) Let $\{a_n\}$ If $\{a_n\}$ is increasin (3) 8. (15 points) Let f b $[1, \infty)$. Prove that	+) be a sequence of positive numbers. Define $a_n = \frac{1}{n} \sum_{j=1}^n a_j = \frac{1}{n} (a_1 + a_2 + \dots + a_n)$ The prove that $\{\sigma_n\}$ is increasing. That is, show that $a_n \le a_{n+1} \implies \sigma_n \le \sigma_{n+1}$ The provesting the equation of $[0, \infty)$ and suppose that f is uniformly continuous on $[0, \infty)$.	niformly continuous on
rjh	3	Form C	rjh	4	Form C

Math 320	Exar

Exam 2- Sample

9. (Bonus - 10 points) Let I = [a, b] be a closed bounded interval and let f, g : I → ℝ be continuous functions. Prove that C = {x ∈ I : f(x) = g(x)} is a closed set. *Hint:* First show that C₀ = {x ∈ I : f(x) = 0} is closed.

Form C