
Math 320 Exam 2- Sample Summer 2015

Throughout this exam you may assume that A ⊆ R is never the empty set.

1. (10 points) Let {an} and {bn} be sequences of positive real numbers. Suppose that
∑

∞

n=1
an

converges and lim sup bn < ∞. Prove that
∑

∞

n=1
an bn converges.

Solution:

We use the Comparison test.

We claim that {bn} is bounded. Otherwise, there is a subsequence {bnk
} such that

bnk
→ ∞ as k → ∞. Thus lim sup bn = ∞, contrary to our assumption.

So there is an M > 0 such that for all n ∈ N we have 0 < bn < M . Now an > 0 implies

(1) 0 < anbn < Man, n ∈ N

By the Algebraic Limit theorems,

(2)
∞
∑

n=1

Man = M
∞
∑

n=1

an < ∞

The result now follows by combining (1) and (2) and invoking the Comparison test.

2. (15 points) Use an ε-δ argument to prove that f(x) = x2 + 3x is continuous at 4.

Solution:

Probably the easiest method is to rewrite (using Taylor polynomials, perhaps)

f(x)− 28 = x2 + 3x− 28

= (x− 4)2 + 11(x− 4)

and proceed in the usual manner.

Here’s the standard approach. Let ε > 0 and let δ = min{1, ε/12}. Then |x− 4| < δ
implies |x+ 7| < 12 and

|f(x)− f(4)| = |x2 + 3x− 28|

= |x− 4| |x+ 7|

<
ε

12
12

as desired.
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3. (15 points)

(a) Carefully state the Intermediate Value Theorem.

Solution:

Intermediate Value Theorem Let f be a continuous function on an interval I and let
a, b ∈ I with a < b. Then f attains every value between f(a) and f(b). In other words, if
f(a) < L < f(b) (or f(b) < L < f(a)), then there is c ∈ (a, b) such that f(c) = L.

(b) Let f : [0, 1] → R be a continuous function such that f(0) = f(1). Prove that there exists a
point c ∈ [0, 1/2] such that f(c) = f(c+ 1/2).

Hint: Consider the function g(x) = f(x)− f(x+ 1/2).

Solution:

Let g(x) = f(x)− f(x+ 1/2) and notice that g is continuous on [0, 1/2]. Also,

g(0) = f(0)− f(1/2)

and

g(1/2) = f(1/2)− f(1) = f(1/2)− f(0)

= −g(0)

If f(0) = f(1/2) then choose c = 1/2. Otherwise, g(0) and g(1/2) have opposite signs. So
by the IVT, there is a point c ∈ (0, 1/2) such that

0 = g(c) = f(c)− f(c+ 1/2)

as desired.

4. (10 points) Let f : A → R be uniformly continuous. Suppose that {xn} ⊂ A is a convergent
sequence. Prove that {f(xn)} is a bounded sequence.

Warning: You can not assume that limn→∞ xn = c ∈ A since A is not necessarily closed.

Solution:

Let ε > 0 and choose δ > 0 so that |x− y| < δ implies that |f(x)− f(y)| < ε. Since {xn}
converges, it is a Cauchy sequence. So there exists N ∈ N such that m,n ≥ N implies
|xn − xm| < δ. It follows that for all m,n ≥ N

|f(xn)− f(xm)| < ε

and hence,
{

f(xn)
}

is a Cauchy sequence. But Cauchy sequences are convergent and
hence bounded.
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5. (15 points) Carefully state the Axiom of Completeness, and use it to prove that every bounded
increasing sequence of real numbers has a limit.

Solution:

Axiom of Completeness: Every nonempty subset of real numbers that is bounded above
has a least upper bound.

Proof. Now suppose that A = {xn} is a bounded increasing sequence of real numbers. By
the AoC, A has a supremum. So let x∗ = supA. We claim that limn→∞ xn = x∗. To see
this let ε > 0. Then, by the definition of supremum, there is an N ∈ N such that
x∗ − ε < xN < x∗. But since {xn} is an increasing sequence, we must have

x∗ − ε ≤ xN < xn < x∗

provided n ≥ N . It follows that

x∗ − ε < xn < x∗ < x∗ + ε

=⇒− ε < xn − x∗ < ε

=⇒|xn − x∗| < ε

as desired.

6. (10 points) Find the radius of convergence and give the exact interval of convergence for the power
series below.

∞
∑

n=1

3n

n2
xn

Solution:

We use the (Absolute) Ratio Test (the Root Test also works). Let an equal the summand.
Then

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

3n+1

(n+ 1)2
n2

3n
|x|n+1

|x|n

= 3|x| lim
n→∞

n2

(n+ 1)2
= 3|x|

It follows that the Radius of Convergence is 1/3 and hence the Interval of Convergence is
(−1/3, 1/3). Now we test the end points. When x = 1/3, the series becomes

∞
∑

n=1

3n

n2

(

1

3

)n

=
∞
∑

n=1

1

n2
< ∞

The series also converges at x = −1/3. Thus I = [−1/3, 1/3].
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7. (10 points) Let {an} be a sequence of positive numbers. Define

σn =
1

n

n
∑

j=1

aj =
1

n
(a1 + a2 + · · ·+ an)

If {an} is increasing prove that {σn} is increasing. That is, show that

(3) an ≤ an+1 =⇒ σn ≤ σn+1

Remark. Here’s a useful observation. We’ll use a baseball analogy. For each n ∈ N let an denote a
players batting average for the nth game in a season. Then σn would denote her average through
the first n games. Thus (3) is simply stating that if a player’s game averages continue to increase,
then so does her seasonal average.

Solution:

We postpone the induction proof since there is a much easier way. Notice that

(4) an+1 − ak ≥ 0, for 1 ≤ k ≤ n

{an} is increasing. Thus

σn+1 − σn =
1

n+ 1
(a1 + a2 + · · ·+ an + an+1)−

1

n
(a1 + a2 + · · ·+ an)

=
n(a1 + a2 + · · ·+ an + an+1)− (n+ 1)(a1 + a2 + · · ·+ an)

n(n+ 1)

=
nan+1 − (a1 + a2 + · · ·+ an)

n(n+ 1)

=
(an+1 − a1) + (an+1 − a2) + · · ·+ (an+1 − an)

n(n+ 1)
≥ 0

The result follows.

Here’s an easier proof. First note that

σn =
a1 + a2 + · · ·+ an

n
≤

nan
n

= an ≤ an+1

Thus

(n+ 1)σn = nσn + σn

≤ nσn + an+1

= a1 + a2 + · · ·+ an + an+1

Now divide through by n+ 1 to obtain the result.

rjh 4 Form C



Math 320 Exam 2- Sample Summer 2015

Now here’s the induction proof. Warning: The induction hypothesis is employed in a way that is

not obvious without some experience. I’ll begin by using some concrete values for n.

Clearly,

(5) σ1 = a1 =
a1 + a1

2
≤

a1 + a2
2

= σ2

Now show that σ2 ≤ σ3 implies σ3 ≤ σ4. So

a1 + a2 + a3 = a1 + a2 + a3

and each one of the following inequalities follows directly from the induction hypothesis.

a1 + a2 + a4 ≥
3

2
(a1 + a2)

a1 + a3 + a4 ≥
3

2
(a1 + a3)

a2 + a3 + a4 ≥
3

2
(a2 + a3)

Now add up the left-hand and right-hand sides of the 4 lines above to obtain

3a1 + 3a2 + 3a3 + 3a4 ≥ 4a1 + 4a2 + 4a3

Thus

σ4 =
a1 + a2 + a3 + a4

4
≥

a1 + a2 + a3
3

= σ3

Now the path is clear. We have already proven the base case above (see (5)). So let

Σk =
n+2
∑

j=1

aj − ak, 1 ≤ k ≤ n+ 1

σk = Σk − an+2, 1 ≤ k ≤ n+ 1

That is, Σk is the sum of the first n+ 2 terms in the sequence excluding the kth term. For example,

Σ3 = a1 + a2 + a4 + · · ·+ an+2

and

σ3 = a1 + a2 + a4 + · · ·+ an+1

Then

Σ1 ≥
n+ 1

n
σ1

Σ2 ≥
n+ 1

n
σ2

...

Σn+1 ≥
n+ 1

n
σn+1
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As we did before, add up the left and right sides to obtain.

n(a1 + a2 + · · ·+ an) + (n+ 1)an+2 ≥ (n+ 1)(a1 + a2 + · · ·+ an+1)

Now adding a1 + a2 + · · ·+ an+1 to both sides yields

(n+ 1)(a1 + a2 + · · ·+ an+1 + an+2) ≥ (n+ 2)(a1 + a2 + · · ·+ an+1)

Rearranging we obtain

σn+2 =
a1 + a2 + · · ·+ an+2

n+ 2
≥

a1 + a2 + · · ·+ an+1

n+ 1
= σn+1

...and now my head hurts.

8. (15 points) Let f be a continuous function on [0,∞) and suppose that f is uniformly continuous on
[1,∞). Prove that f is uniformly continuous on [0,∞).

Solution:

Notice that by Theorem 3.19.2 (from the text), f is uniformly continuous on the closed
and bounded interval [0, 1]. Now let ε > 0. By the uniform continuity of f on [0, 1], there
exists a δ1 > 0 such that x, y ∈ [0, 1] with |x− y| < δ1 implies |f(x)− f(y)| < ε/2. Also, by
the uniform continuity of f on [1,∞), there exists a δ2 > 0 such that x, y ∈ [1,∞) with
|x− y| < δ2 implies |f(x)− f(y)| < ε/2.

Now let δ = min{δ1, δ2}. The cases x, y ∈ [0, 1] or x, y ∈ [1,∞) with |x− y| < δ have
already been dealt with above. Now suppose that x ∈ [0, 1] and y ∈ [1,∞) with
|x− y| < δ. Then x ≤ 1 ≤ y and |x− 1| < δ1 and |y − 1| < δ2. Thus

|f(x)− f(y)| = |f(x)− f(1) + f(1)− f(y)|

≤ |f(x)− f(1)|+ |f(1)− f(y)|

< ε/2 + ε/2

9. (Bonus - 10 points) Let I = [a, b] be a closed bounded interval and let f, g : I → R be continuous
functions. Prove that C = {x ∈ I : f(x) = g(x)} is a closed set.

Hint: First show that C0 = {x ∈ I : f(x) = 0} is closed.

Solution:

First we show that C0 = {x ∈ I : f(x) = 0} is closed. Let c be a limit point of C0 ⊆ I and
let {xn} be a sequence in C0 that converges to c. Clearly c ∈ I since I is closed. Now

f(c) = lim
n→∞

f(xn) = lim
n→∞

0 = 0

and hence c ∈ C0. It follows that C0 is closed.

For the general case, observe that h(x) = f(x)− g(x) is a continuous function. Now
apply the above result to the set

{x ∈ I : h(x) = 0} = C
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