Throughout this exam you may assume that $A \subseteq \mathbb{R}$ is never the empty set.

1. (10 points) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive real numbers. Suppose that $\sum_{n=1}^{\infty} a_{n}$ converges and $\lim \sup b_{n}<\infty$. Prove that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

Solution:

We use the Comparison test.
We claim that $\left\{b_{n}\right\}$ is bounded. Otherwise, there is a subsequence $\left\{b_{n_{k}}\right\}$ such that $b_{n_{k}} \rightarrow \infty$ as $k \rightarrow \infty$. Thus limsup $b_{n}=\infty$, contrary to our assumption.

So there is an $M>0$ such that for all $n \in \mathbb{N}$ we have $0<b_{n}<M$. Now $a_{n}>0$ implies

$$
\begin{equation*}
0<a_{n} b_{n}<M a_{n}, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

By the Algebraic Limit theorems,

$$
\begin{equation*}
\sum_{n=1}^{\infty} M a_{n}=M \sum_{n=1}^{\infty} a_{n}<\infty \tag{2}
\end{equation*}
$$

The result now follows by combining (1) and (2) and invoking the Comparison test.
2. (15 points) Use an $\varepsilon-\delta$ argument to prove that $f(x)=x^{2}+3 x$ is continuous at 4 .

Solution:

Probably the easiest method is to rewrite (using Taylor polynomials, perhaps)

$$
\begin{aligned}
f(x)-28 & =x^{2}+3 x-28 \\
& =(x-4)^{2}+11(x-4)
\end{aligned}
$$

and proceed in the usual manner.
Here's the standard approach. Let $\varepsilon>0$ and let $\delta=\min \{1, \varepsilon / 12\}$. Then $|x-4|<\delta$ implies $|x+7|<12$ and

$$
\begin{aligned}
|f(x)-f(4)| & =\left|x^{2}+3 x-28\right| \\
& =|x-4||x+7| \\
& <\frac{\varepsilon}{12} 12
\end{aligned}
$$

as desired.
3. (15 points)
(a) Carefully state the Intermediate Value Theorem.

Solution:

Intermediate Value Theorem Let f be a continuous function on an interval I and let $a, b \in I$ with $a<b$. Then f attains every value between $f(a)$ and $f(b)$. In other words, if $f(a)<L<f(b)$ (or $f(b)<L<f(a)$), then there is $c \in(a, b)$ such that $f(c)=L$.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)$. Prove that there exists a point $c \in[0,1 / 2]$ such that $f(c)=f(c+1 / 2)$.
Hint: Consider the function $g(x)=f(x)-f(x+1 / 2)$.

Solution:

Let $g(x)=f(x)-f(x+1 / 2)$ and notice that g is continuous on $[0,1 / 2]$. Also,

$$
g(0)=f(0)-f(1 / 2)
$$

and

$$
\begin{aligned}
g(1 / 2) & =f(1 / 2)-f(1)=f(1 / 2)-f(0) \\
& =-g(0)
\end{aligned}
$$

If $f(0)=f(1 / 2)$ then choose $c=1 / 2$. Otherwise, $g(0)$ and $g(1 / 2)$ have opposite signs. So by the IVT, there is a point $c \in(0,1 / 2)$ such that

$$
0=g(c)=f(c)-f(c+1 / 2)
$$

as desired.
4. (10 points) Let $f: A \rightarrow \mathbb{R}$ be uniformly continuous. Suppose that $\left\{x_{n}\right\} \subset A$ is a convergent sequence. Prove that $\left\{f\left(x_{n}\right)\right\}$ is a bounded sequence.
Warning: You can not assume that $\lim _{n \rightarrow \infty} x_{n}=c \in A$ since A is not necessarily closed.

Solution:

Let $\varepsilon>0$ and choose $\delta>0$ so that $|x-y|<\delta$ implies that $|f(x)-f(y)|<\varepsilon$. Since $\left\{x_{n}\right\}$ converges, it is a Cauchy sequence. So there exists $N \in \mathbb{N}$ such that $m, n \geq N$ implies $\left|x_{n}-x_{m}\right|<\delta$. It follows that for all $m, n \geq N$

$$
\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon
$$

and hence, $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence. But Cauchy sequences are convergent and hence bounded.
5. (15 points) Carefully state the Axiom of Completeness, and use it to prove that every bounded increasing sequence of real numbers has a limit.

Solution:

Axiom of Completeness: Every nonempty subset of real numbers that is bounded above has a least upper bound.

Proof. Now suppose that $A=\left\{x_{n}\right\}$ is a bounded increasing sequence of real numbers. By the AoC, A has a supremum. So let $x^{*}=\sup A$. We claim that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. To see this let $\varepsilon>0$. Then, by the definition of supremum, there is an $N \in \mathbb{N}$ such that $x^{*}-\varepsilon<x_{N}<x^{*}$. But since $\left\{x_{n}\right\}$ is an increasing sequence, we must have

$$
x^{*}-\varepsilon \leq x_{N}<x_{n}<x^{*}
$$

provided $n \geq N$. It follows that

$$
\begin{aligned}
& x^{*}-\varepsilon<x_{n}<x^{*}<x^{*}+\varepsilon \\
& \Longrightarrow-\varepsilon<x_{n}-x^{*}<\varepsilon \\
& \Longrightarrow\left|x_{n}-x^{*}\right|<\varepsilon
\end{aligned}
$$

as desired.
6. (10 points) Find the radius of convergence and give the exact interval of convergence for the power series below.

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2}} x^{n}
$$

Solution:

We use the (Absolute) Ratio Test (the Root Test also works). Let a_{n} equal the summand. Then

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3^{n+1}}{(n+1)^{2}} \frac{n^{2}}{3^{n}} \frac{|x|^{n+1}}{|x|^{n}} \\
& =3|x| \lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=3|x|
\end{aligned}
$$

It follows that the Radius of Convergence is $1 / 3$ and hence the Interval of Convergence is $(-1 / 3,1 / 3)$. Now we test the end points. When $x=1 / 3$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2}}\left(\frac{1}{3}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

The series also converges at $x=-1 / 3$. Thus $I=[-1 / 3,1 / 3]$.
7. (10 points) Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Define

$$
\sigma_{n}=\frac{1}{n} \sum_{j=1}^{n} a_{j}=\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)
$$

If $\left\{a_{n}\right\}$ is increasing prove that $\left\{\sigma_{n}\right\}$ is increasing. That is, show that

$$
\begin{equation*}
a_{n} \leq a_{n+1} \quad \Longrightarrow \quad \sigma_{n} \leq \sigma_{n+1} \tag{3}
\end{equation*}
$$

Remark. Here's a useful observation. We'll use a baseball analogy. For each $n \in \mathbb{N}$ let a_{n} denote a players batting average for the $n^{\text {th }}$ game in a season. Then σ_{n} would denote her average through the first n games. Thus (3) is simply stating that if a player's game averages continue to increase, then so does her seasonal average.

Solution:

We postpone the induction proof since there is a much easier way. Notice that

$$
\begin{equation*}
a_{n+1}-a_{k} \geq 0, \quad \text { for } 1 \leq k \leq n \tag{4}
\end{equation*}
$$

$\left\{a_{n}\right\}$ is increasing. Thus

$$
\begin{aligned}
\sigma_{n+1}-\sigma_{n} & =\frac{1}{n+1}\left(a_{1}+a_{2}+\cdots+a_{n}+a_{n+1}\right)-\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right) \\
& =\frac{n\left(a_{1}+a_{2}+\cdots+a_{n}+a_{n+1}\right)-(n+1)\left(a_{1}+a_{2}+\cdots+a_{n}\right)}{n(n+1)} \\
& =\frac{n a_{n+1}-\left(a_{1}+a_{2}+\cdots+a_{n}\right)}{n(n+1)} \\
& =\frac{\left(a_{n+1}-a_{1}\right)+\left(a_{n+1}-a_{2}\right)+\cdots+\left(a_{n+1}-a_{n}\right)}{n(n+1)} \geq 0
\end{aligned}
$$

The result follows.
Here's an easier proof. First note that

$$
\sigma_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq \frac{n a_{n}}{n}=a_{n} \leq a_{n+1}
$$

Thus

$$
\begin{aligned}
(n+1) \sigma_{n} & =n \sigma_{n}+\sigma_{n} \\
& \leq n \sigma_{n}+a_{n+1} \\
& =a_{1}+a_{2}+\cdots+a_{n}+a_{n+1}
\end{aligned}
$$

Now divide through by $n+1$ to obtain the result.

Now here's the induction proof. Warning: The induction hypothesis is employed in a way that is not obvious without some experience. I'll begin by using some concrete values for n.

Clearly,

$$
\begin{equation*}
\sigma_{1}=a_{1}=\frac{a_{1}+a_{1}}{2} \leq \frac{a_{1}+a_{2}}{2}=\sigma_{2} \tag{5}
\end{equation*}
$$

Now show that $\sigma_{2} \leq \sigma_{3}$ implies $\sigma_{3} \leq \sigma_{4}$. So

$$
a_{1}+a_{2}+a_{3}=a_{1}+a_{2}+a_{3}
$$

and each one of the following inequalities follows directly from the induction hypothesis.

$$
\begin{aligned}
& a_{1}+a_{2}+a_{4} \geq \frac{3}{2}\left(a_{1}+a_{2}\right) \\
& a_{1}+a_{3}+a_{4} \geq \frac{3}{2}\left(a_{1}+a_{3}\right) \\
& a_{2}+a_{3}+a_{4} \geq \frac{3}{2}\left(a_{2}+a_{3}\right)
\end{aligned}
$$

Now add up the left-hand and right-hand sides of the 4 lines above to obtain

$$
3 a_{1}+3 a_{2}+3 a_{3}+3 a_{4} \geq 4 a_{1}+4 a_{2}+4 a_{3}
$$

Thus

$$
\sigma_{4}=\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4} \geq \frac{a_{1}+a_{2}+a_{3}}{3}=\sigma_{3}
$$

Now the path is clear. We have already proven the base case above (see (5)). So let

$$
\begin{aligned}
\Sigma^{k} & =\sum_{j=1}^{n+2} a_{j}-a_{k}, \quad 1 \leq k \leq n+1 \\
\sigma^{k} & =\Sigma^{k}-a_{n+2}, \quad 1 \leq k \leq n+1
\end{aligned}
$$

That is, Σ^{k} is the sum of the first $n+2$ terms in the sequence excluding the $k^{\text {th }}$ term. For example,

$$
\Sigma^{3}=a_{1}+a_{2}+a_{4}+\cdots+a_{n+2}
$$

and

$$
\sigma^{3}=a_{1}+a_{2}+a_{4}+\cdots+a_{n+1}
$$

Then

$$
\begin{aligned}
& \Sigma^{1} \geq \frac{n+1}{n} \sigma^{1} \\
& \Sigma^{2} \geq \frac{n+1}{n} \sigma^{2} \\
& \vdots \\
& \Sigma^{n+1} \geq \frac{n+1}{n} \sigma^{n+1}
\end{aligned}
$$

As we did before, add up the left and right sides to obtain.

$$
n\left(a_{1}+a_{2}+\cdots+a_{n}\right)+(n+1) a_{n+2} \geq(n+1)\left(a_{1}+a_{2}+\cdots+a_{n+1}\right)
$$

Now adding $a_{1}+a_{2}+\cdots+a_{n+1}$ to both sides yields

$$
(n+1)\left(a_{1}+a_{2}+\cdots+a_{n+1}+a_{n+2}\right) \geq(n+2)\left(a_{1}+a_{2}+\cdots+a_{n+1}\right)
$$

Rearranging we obtain

$$
\sigma_{n+2}=\frac{a_{1}+a_{2}+\cdots+a_{n+2}}{n+2} \geq \frac{a_{1}+a_{2}+\cdots+a_{n+1}}{n+1}=\sigma_{n+1}
$$

...and now my head hurts.
8. (15 points) Let f be a continuous function on $[0, \infty)$ and suppose that f is uniformly continuous on $[1, \infty)$. Prove that f is uniformly continuous on $[0, \infty)$.

Solution:

Notice that by Theorem 3.19.2 (from the text), f is uniformly continuous on the closed and bounded interval $[0,1]$. Now let $\varepsilon>0$. By the uniform continuity of f on $[0,1]$, there exists a $\delta_{1}>0$ such that $x, y \in[0,1]$ with $|x-y|<\delta_{1}$ implies $|f(x)-f(y)|<\varepsilon / 2$. Also, by the uniform continuity of f on $[1, \infty)$, there exists a $\delta_{2}>0$ such that $x, y \in[1, \infty)$ with $|x-y|<\delta_{2}$ implies $|f(x)-f(y)|<\varepsilon / 2$.
Now let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. The cases $x, y \in[0,1]$ or $x, y \in[1, \infty)$ with $|x-y|<\delta$ have already been dealt with above. Now suppose that $x \in[0,1]$ and $y \in[1, \infty)$ with $|x-y|<\delta$. Then $x \leq 1 \leq y$ and $|x-1|<\delta_{1}$ and $|y-1|<\delta_{2}$. Thus

$$
\begin{aligned}
|f(x)-f(y)| & =|f(x)-f(1)+f(1)-f(y)| \\
& \leq|f(x)-f(1)|+|f(1)-f(y)| \\
& <\varepsilon / 2+\varepsilon / 2
\end{aligned}
$$

9. (Bonus - 10 points) Let $I=[a, b]$ be a closed bounded interval and let $f, g: I \rightarrow \mathbb{R}$ be continuous functions. Prove that $C=\{x \in I: f(x)=g(x)\}$ is a closed set.
Hint: First show that $C_{0}=\{x \in I: f(x)=0\}$ is closed.

Solution:

First we show that $C_{0}=\{x \in I: f(x)=0\}$ is closed. Let c be a limit point of $C_{0} \subseteq I$ and let $\left\{x_{n}\right\}$ be a sequence in C_{0} that converges to c. Clearly $c \in I$ since I is closed. Now

$$
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} 0=0
$$

and hence $c \in C_{0}$. It follows that C_{0} is closed.
For the general case, observe that $h(x)=f(x)-g(x)$ is a continuous function. Now apply the above result to the set

$$
\{x \in I: h(x)=0\}=C
$$

