
Math 320 Sample Final Summer 2015

You may assume that A ⊆ R is never the empty set.

1. Let A be a bounded subset of real numbers and let c > 0. Define cA = {ca : a ∈ A}. Show that
sup cA = c supA.

Solution:

By the Axiom of Completeness, α = supA is finite. So for all a ∈ A,

α ≥ a

Then c > 0 implies that

cα ≥ ca(1)

It follows that cA is bounded above (by cα), hence sup cA is finite (again by the Axiom of
Completeness). Now suppose that β is any upper bound for cA. Then β ≥ ca for all
a ∈ A. In particular, β/c ≥ a for all a ∈ A. It follows that β/c is an upper bound for A and
so, β/c ≥ α since α is the least upper bound (of A). Hence

(2) β ≥ cα

Putting (1) and (2) together, we conclude that cα = sup cA.

2. Let 0 ≤ b < 1. Show that for each k ∈ N, we have

(3) lim
n→∞

nkbn = 0

Solution:

Throughout, we fix k ∈ N and let an = nkbn.

Claim: It suffices to show that an+1/an → L < 1 as n → ∞. But this is trivial. Now by the
Ratio Test (everything is positive), the series

∑
nkbn < ∞. It follows that nkbn → 0 as

n → ∞.
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Solution (cont):

Some might argue that the above proof is the consequence of a trick. Here’s a second proof that
makes the above “ratio test” more plausible but does not make use of series. Let R = L+1

2
and

notice that L < R < 1. It follows that for n sufficiently large, say n ≥ N ∈ N, we have

aN+1

aN
< R or aN+1 < RaN

It follows that

aN+2 < RaN+1 < R2aN

Continuing we see that

0 < aN+k < RkaN

Now observe that aN is a constant and hence, the right-hand side of the last inequality approaches
0 as k → ∞. The result now follows by the Squeeze Law. (Cf. this argument with the standard
proof of the Ratio Test, which can be found in any calculus text.)

Here’s another proof. According to Theorem 2.9.10 (from the text), (3) is equivalent to

lim
n→∞

1

an
= ∞

Notice that b−1 > 1 and we may write b−1 = 1 + c for some c > 0. Then

1

an
=

b−n

nk
=

1

nk
(1 + c)n

Now choose n > k and apply the Binomial Formula (as we have seen before). This yields

1

an
=

1

nk
(1 + c)n

=
1

nk

(

1 + nc+

(
n

2

)

c2 +

(
n

3

)

c3 + · · ·+

(
n

k + 1

)

ck+1 + positive terms

)

>
1

nk

(
n

k + 1

)

ck+1 =
1

nk
n(n− 1) · · · (n− k + 1)
︸ ︷︷ ︸

k factors

(n− k) ck+1

=
n(n− 1) · · · (n− k + 1)

nk
(n− k)ck+1

Letting n go to infinity we see that the rational quantity approaches 1 and hence, the right-hand
side grows without bound. In other words, 1/an → ∞ as n → ∞. We conclude that limn→∞ an = 0.
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3. Decide whether the set below is open, closed, or neither. Provide a brief justification. In particular,
if the set is neither open nor closed find a limit point that does not belong to the set and find a point
c in the set such that no ε-neighborhood of c is in the set.

{1 + 1/4 + 1/9 + · · ·+ 1/n2 : n ∈ N} ∪ {π2/6}

Note:
∑

∞

n=1
1/n2 = π2/6

Solution:

Let A = {1 + 1/4 + 1/9 + · · ·+ 1/n2 : n ∈ N}. Then A contains an strictly increasing (and
hence isolated) sequence of real numbers whose only limit point is π2/6. It follows that
the A ∪ {π2/6} is closed.

4. Let {an} and {bn} be sequences of positive real numbers. Suppose that limn→∞ n2an = A < ∞ and
limn→∞ bn = b. Prove that

∑
∞

n=1
an bn converges.

Solution:

We first remark that by the Limit Comparison test,
∑

∞

n=1
an converges since

∑
∞

n=1
n−2

converges. Now since {bn} converges, it is bounded. So there is an L > 0 such that for all
n ∈ N we have 0 < bn < L. Now an > 0 implies

(4) 0 < anbn < Lan, n ∈ N

By the Algebraic Limit theorems,

(5)
∞∑

n=1

Lan = L
∞∑

n=1

an < ∞

The result now follows by combining (4) and (5) and invoking the Comparison test.

As an alternative, notice that since everything is positive, we can invoke the Limit
Comparison test directly.

lim
n→∞

anbn
1/n2

= lim
n→∞

n2an · lim
n→∞

bn = Ab < 0

It follows by the LCT that
∑

anbn < ∞ since
∑

1/n2 < ∞.
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5. Use an ε-δ argument to prove that f(x) = 2x3 − 5x is differentiable at 2.

Solution:

We claim that f is differentiable at 2 and that f ′(2) = 19. To see this, let ε > 0 and let
δ = min{1, ε/14}. Then |x− 2| < δ implies |x+ 4| < 7 and

∣
∣
∣
∣

f(x)− f(2)

x− 2
− 19

∣
∣
∣
∣
= |2x2 + 4x+ 3− 19|

= 2|x− 2| |x+ 4|

<

(
2

1

)(
ε

14

)(
7

1

)

= ε

as desired.

6. Show the series
∑

∞

n=0
xn

2−xn converges for x ∈ [0, 1). Show that the series converges uniformly on
[0, a] for all 0 < a < 1.

Solution:

Done in class.

7. Let f(x) = x2 if x ∈ Q and let f(x) = 0 otherwise. Prove f is discontinuous for x 6= 0. Prove f is
differentiable at 0.

Solution:

We proved continuity in class. Differentiability is nearly as easy. To see the f is
discontinuous away from 0, choose c 6= 0 and work two cases:

(i) If c /∈ Q, then choose a sequence {qn} of rational numbers that convege to c. Now
observe that f(qn) = q2n → c2 6= 0 = f(c).

(ii) On the other hand, if c ∈ Q, then choose a sequence of irrational numbers {in} such
that in → c, and notice that f(in) = 0 → 0 6= c2 = f(c).

8. Let f : [0, 1) → R be uniformly continuous. Prove that limx→1− f(x) exists.

Hint: Use the fact that 1 is limit point of [0, 1).

Solution:

So let {xn} ⊂ [0, 1) be a sequence such that xn → 1 as n → ∞. It follows that {xn} is a
Cauchy sequence, and hence, so is {f(xn)}, as we’ve saw on Exam 2. Since Cauchy
sequences are convergent, the result follows.
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9. Let ck > 0 for k = 1, 2, 3, . . . , n. Prove that

(6) n2 ≤ (c1 + c2 + · · ·+ cn)
︸ ︷︷ ︸

A

(
1

c1
+

1

c2
+ · · ·+

1

cn

)

︸ ︷︷ ︸

B

for all n ∈ N.

Solution:

Trivially, 12 ≤ c1 ·
1

c1
and as we saw in class,

22 ≤ (c1 + c2)

(
1

c1
+

1

c2

)

follows immediately from the observation that (c1 − c2)
2 ≥ 0.

Now let A and B be defined as in (6). Then AB ≥ n2 and

(c1 + c2 + · · ·+ cn + cn+1)

(
1

c1
+

1

c2
+ · · ·+

1

cn
+

1

cn+1

)

= (A+ cn+1)

(

B +
1

cn+1

)

= AB +
A

cn+1

+Bcn+1 + 1

≥ n2 + 1 +
A

cn+1

+Bcn+1(7)

It suffices to show that
A

cn+1

+Bcn+1 ≥ 2n. We have

A

cn+1

+Bcn+1 =
c1

cn+1

+
c2

cn+1

+ · · ·+
cn
cn+1

+ · · ·

+ · · ·
cn+1

c1
+

cn+1

c2
+ · · ·+

cn+1

cn

=

(
c1

cn+1

+
cn+1

c1

)

+

(
c2

cn+1

+
cn+1

c2

)

+ · · ·+

(
cn
cn+1

+
cn+1

cn

)

≥ 2 + 2 + · · ·+ 2
︸ ︷︷ ︸

n terms

= 2n

Continuing from (7), we have

(A+ cn+1)

(

B +
1

cn+1

)

≥ n2 + 1 +
A

cn+1

+Bcn+1

≥ n2 + 1 + 2n = (n+ 1)2

as desired.
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10. Let {an} be a sequence of nonnegative real numbers. Suppose that an → a ∈ R as n → ∞. Prove
that

lim
n→∞

1

n

n∑

j=1

an = a

Hint: One may assume that a = 0.

Solution:

Let ε > 0. Since an → 0 as n → ∞, we can choose N so large that |an| = an < ε whenever
n ≥ N . Thus

1

N +m

N+m∑

n=1

an =
1

N +m

N∑

n=1

an

︸ ︷︷ ︸

SN

+
1

N +m

N+m∑

n=N+1

an

≤
1

N +m
SN +

1

N +m

N+m∑

n=N+1

ε

=
1

N +m
SN +

m

N +m
ε

<
1

N +m
SN + ε

Notice that SN is constant (i.e., it does not depend on m). Now let m → ∞ to conclude
that

0 ≤ lim
m→∞

1

N +m

N+m∑

n=1

an ≤ ε

Since ε > 0 was arbitrary, we conclude that

(8) lim
n→∞

1

n

n∑

j=1

an = 0

For the general case, let bn = |a− an|. Then bn ≥ 0 for each n ∈ N and bn → 0 as n → ∞.
Now

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

an − a

∣
∣
∣
∣
∣
∣

=
1

n

∣
∣
∣
∣
∣
∣

n∑

j=1

(an − a)

∣
∣
∣
∣
∣
∣

≤
1

n

n∑

j=1

|an − a|

=
1

n

n∑

j=1

bn

Now by (8) the right-hand side goes to zero as n → ∞. The result follows.
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