It was mentioned after class last week that with the sequential definition of continuity (Definition 1 from the text), it was easier to prove that a function is discontinuous at a point. I claim that this it is still possible, even without Definition 1.

First, let's examine the ε - δ (bare-bones) definition of continuity. Let *f* be a function defined on a set *D*. Below we assume that *x* is always an element of *D*. We say *f* is continuous at $c \in D$ provided that

$$\forall \varepsilon > 0 \ \exists \delta > 0$$
 such that if $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$

What is the negation of the above definition? That is, what does it mean to prove that *f* is not continuous at a point $c \in D$?

(1) $\exists \varepsilon > 0$ such that $\forall \delta > 0 \exists x$ satisfying $|x - c| < \delta$, with $|f(x) - f(c)| \ge \varepsilon$

Keep in mind we need only find one domain element for each $\delta > 0$. However, since δ is arbitrary, we must be able to find domain elements, *x*, that are arbitrarily close *c* with the property that $|f(x) - f(c)| \ge \varepsilon$.

Figure 1: The Topologist's Sine Curve

To illustrate, let us prove that $f(x) = \sin(1/x)$ has no limit at x = 0 (Figure 1).

Now let $x_n = \frac{2}{(2n+1)\pi}$. Notice that $x_n \to 0$ as $n \to \infty$, and $y_n =^{\text{def}} f(x_n) = -1$ if n is odd and +1 if n is even. In particular, the sequence $\{y_n\}$ is not Cauchy and hence can not converge (as we saw in chapter 7). We claim that this is enough to imply (1).

Now let $\varepsilon = 1/2$ (we only need to find one positive ε so that (1) holds). Now we must show that for every choice of $\delta > 0$, we can find an element *x* with $|x-0| < \delta$, **but** $|f(x) - L| \ge 1/2$. Wait a minute! What the heck is *L*? It turns out that it doesn't matter. For the time being let's just assume that *L* is any real number.

So let $\delta > 0$ be arbitrary. By the Archimedian Property there exists an $n \in \mathbb{N}$ such that $2n > \frac{1}{\delta}$ and since $\frac{(4n+1)\pi}{2} > n$, we must have $0 < x_{2n+1} < x_{2n} < \delta$. Now as we noted above, $f(x_n) = (-1)^n$. Now it follows from an argument that we have seen before that at least one of the inequalities below must be true. That is, either

 $|L - f(x_{2n})| = |L - 1| \ge 1/2$ or $|L - f(x_{2n+1})| = |L + 1| \ge 1/2$

as desired!

Let's recap this approach. We showed that if we can find a sequence $\{w_n\}$ that converges to *c* with the property that the sequence $\{f(w_n)\}$ either does not converge to f(c) (if known), or simply does not converge (to any real number), then *f* is not continuous at *c*.

Remark. The above problem is sometimes formulated as follows:

Let

$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0\\ L, & \text{otherwise.} \end{cases}$$

where L is usually specified (0 is a popular choice). We used the above approach to show that, for this example, no choice of L will work!