a. Let $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$. Then the sup A is the least upper bound of the set A which happens to contain n elements.
b. Another way to write the above is to write $\sup _{n} a_{n}$ instead of $\sup A$. The advantage of this new notation is that we do not need to give a name to the set $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$.
c. Now let $B=\left\{b_{n}\right\}_{n=1}^{\infty}$. We have the following equivalent notations

$$
\sup B=\sup _{n} b_{n}=\sup _{n}\left\{b_{n}\right\}=\sup \left\{b_{n}: n \in \mathbb{N}\right\}
$$

d. Fill in the missing info in the second and third lines below.
(a) $\sup _{8 \leq j<n} a_{j}=\sup \left\{a_{8}, a_{9}, a_{10}, \ldots, a_{n-1}\right\}$
(b) $\sup _{n>4} b_{n}=$
(c) \qquad

