Let $\left\{s_{n}\right\}$ be a sequence of nonnegative numbers, and for each $n \in \mathbb{N}$ let $\sigma_{n}=\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$. Show that

$$
\begin{equation*}
\liminf a_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup a_{n} \tag{1}
\end{equation*}
$$

Remark. We note that by the Squeeze Law, (1) immediately implies that if $\lim _{n \rightarrow \infty} a_{n}=a$, then $\left\{\sigma_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} \sigma_{n}=a$.

Proof

We first establish the last inequality. If the sequence $\left\{a_{n}\right\}$ is not bounded above, then $\limsup a_{n}=\infty$ and there is nothing to prove.

Let $\alpha_{m}=\sup \left\{a_{n}: n>m\right\}$. We recall same facts about the supremum and the limit supremum.
(i) $\lim \sup \sigma_{n}$ and $\lim \sup a_{n}$ both exist as (perhaps) extended real numbers.
(ii) $a_{n} \leq \alpha_{N}$ for all $n>N$.

Following the hint (from the text), let $n>M>N$. Then

$$
\begin{aligned}
\sigma_{n} & =\frac{1}{n} \sum_{j=1}^{N} a_{j}+\frac{1}{n} \sum_{j=N+1}^{n} a_{j} \\
& \leq \frac{1}{n} \sum_{j=1}^{N} a_{j}+\frac{1}{n} \sum_{j=N+1}^{n} \alpha_{N} \\
& \leq \frac{1}{M} \sum_{j=1}^{N} a_{j}+\frac{n-N}{n} \alpha_{N} \\
& <\frac{1}{M} \sum_{j=1}^{N} a_{j}+\alpha_{N}
\end{aligned}
$$

Notice that the right-hand side is now independent of n. In fact, the right-hand side is an upper bound of the set $\left\{\sigma_{M+1}, \sigma_{M+2}, \ldots\right\}$. It follows that

$$
\sup _{n>M} \sigma_{n} \leq \frac{1}{M} \sum_{j=1}^{N} a_{j}+\alpha_{N}
$$

Now let $M \rightarrow \infty$ to conclude that

$$
\limsup \sigma_{n} \leq 0+\alpha_{N}
$$

Letting $N \rightarrow \infty$ yields

$$
\begin{equation*}
\limsup \sigma_{n} \leq \limsup a_{n} \tag{2}
\end{equation*}
$$

The problem with the above proof is that the technique can not be readily adapted to the first inequality. Also, we can not directly use exercise 2.11 .8 because this proof depended heavily on the fact that everything is nonnegative.
rjh

We need to try another approach. Before proceeding, let's establish the following result.
Proposition. Suppose that $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\liminf a_{n} \leq \liminf b_{n} \text { and } \limsup a_{n} \leq \limsup b_{n} \tag{3}
\end{equation*}
$$

Proof
So $b_{n}-a_{n} \geq 0$ for all n. In other words, 0 is a lower bound for the set $\left\{b_{1}-a_{1}, b_{2}-a_{2}, \ldots\right\}$. It follows that for each $n \in \mathbb{N}$

$$
0 \leq \inf _{j \geq n}\left(b_{j}-a_{j}\right)
$$

Letting $n \rightarrow \infty$ yields

$$
\begin{equation*}
0 \leq \liminf \left(b_{n}-a_{n}\right) \tag{4}
\end{equation*}
$$

Now by exercise 2.12.5, we have

$$
\begin{aligned}
\liminf b_{n} & =\liminf \left(b_{n}-a_{n}+a_{n}\right) \\
& \geq \liminf \left(b_{n}-a_{n}\right)+\liminf a_{n} \\
& \geq \liminf a_{n}
\end{aligned}
$$

And the last line follows since $\lim \inf \left(b_{n}-a_{n}\right) \geq 0$. From (4) we have

$$
\begin{aligned}
0 & \geq-\liminf \left(b_{n}-a_{n}\right) \\
& =\limsup \left(a_{n}-b_{n}\right)
\end{aligned}
$$

See exercise 2.11.8. Finally,

$$
\begin{aligned}
\limsup a_{n} & \leq \limsup \left(a_{n}-b_{n}\right)+\lim \sup b_{n} \\
& \leq \limsup b_{n}
\end{aligned}
$$

Corollary. If $a_{n} \leq b_{n}$ for all $n>N \in \mathbb{N}$, then $\liminf a_{n} \leq \liminf b_{n}$ and $\limsup a_{n} \leq \limsup b_{n}$.

Now let $\left\{a_{n}\right\}$ be a sequence of real numbers (note the change from above). Then

$$
\liminf a_{n} \leq \liminf \sigma_{n}
$$

As before, if $\lim \inf a_{n}=-\infty$ or if $\liminf \sigma_{n}=\infty$, there is nothing to prove.

Let $n>N$ and let $\beta_{N}=\inf \left\{a_{j}: j>N\right\}$. Then

$$
\begin{aligned}
\sigma_{n} & =\frac{1}{n} \sum_{j=1}^{N} a_{j}+\frac{1}{n} \sum_{j=N+1}^{n} a_{j} \\
& \geq \frac{1}{n} \sum_{j=1}^{N} a_{j}+\frac{1}{n} \sum_{j=N+1}^{n} \beta_{N} \\
& =\frac{1}{n} \sum_{j=1}^{N} a_{j}+\frac{n-N}{n} \beta_{N} \\
& ={ }^{\text {def }} b_{n}
\end{aligned}
$$

Now $\sigma_{n} \geq b_{n}$ for all $n>N$. So by (3),

$$
\begin{aligned}
\liminf \sigma_{n} & \geq \liminf b_{n}=\lim \inf \left(\frac{1}{n} \sum_{j=1}^{N} a_{j}+\frac{n-N}{n} \beta_{N}\right) \\
& \geq \liminf \left(\frac{1}{n} \sum_{j=1}^{N} a_{j}\right)+\liminf \left(\frac{n-N}{n} \beta_{N}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{j=1}^{N} a_{j}\right)+\lim _{n \rightarrow \infty}\left(\frac{n-N}{n} \beta_{N}\right) \\
& =\sum_{j=1}^{N} a_{j} \lim _{n \rightarrow \infty} \frac{1}{n}+\beta_{N} \lim _{n \rightarrow \infty} \frac{n-N}{n} \\
& =0+\beta_{N}
\end{aligned}
$$

Now recall that β_{N} is an increasing sequence, and as such, must converge. So we take the limit of both sides to conclude that

$$
\begin{equation*}
\liminf \sigma_{n} \geq \lim _{N \rightarrow \infty} \beta_{N}=\liminf a_{n} \tag{5}
\end{equation*}
$$

and the proof is complete.
Now that we have proven (5) without relying on positivity, it turns out to be rather straight-forward to prove the right-hand side of (1). In fact, the proof is almost trivial.

Once again we take advantage of exercise 2.11.8. By (5) we have

$$
\liminf \left(-\sigma_{n}\right) \geq \liminf \left(-a_{n}\right)
$$

Rearranging yields

$$
\limsup \sigma_{n}=-\liminf \left(-\sigma_{n}\right) \leq-\liminf \left(-a_{n}\right)=\lim \sup a_{n}
$$

as desired.
rjh

