Homework Hint 3.17.14

Summer 2015

The following exercise is a slightly modified version of exercise 3.17.14 from the text.

Let $f:(0,1)\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1/q, & \text{if } x = p/q \text{ with } p, q \in \mathbb{N}, \ p < q, \text{ and } (p,q) = 1; \\ 0, & \text{if } x \in (0,1) \setminus \mathbb{Q}. \end{cases}$$

Here (p,q) = 1 means that p and q are relatively prime, i.e., they have no common factors. Throughout this handout, p and q are assumed to be relatively prime.

Show that f is continuous on the irrationals and discontinuous at each of the rationals.

We sketch y = f(x) below.

We claim that f is continuous at $c \in (0, 1) \setminus \mathbb{Q}$. To see this fix c and let $\varepsilon > 0$ (e.g., as shown in the sketch).

By the Archimedean Property, there $q_0 \in \mathbb{N}$ such that $\frac{1}{q_0} < \varepsilon$. (For the given ε in the sketch, $q_0 = 6$ appears to work.) Now let

(1)
$$\delta = \frac{1}{2} \min\{|c - p/q| : p, q \in \mathbb{N}, \ p < q < q_0, \ \text{and} \ (p, q) = 1\}$$

Then if $|x - c| < \delta$ there are only two possibilities. If $x \in (0, 1) \setminus \mathbb{Q}$ then

 $|f(x) - f(c)| = |0 - 0| < \varepsilon.$

Otherwise, x = p/q with $q \ge q_0$. In that case,

 $|f(x) - f(c)| = |f(p/q) - 0| = 1/q \le 1/q_0 < \varepsilon$

For example, in the sketch above, formula (1) would generate

$$\begin{split} \delta &= \frac{1}{2} \min\{|c-p/q| : p, q \in \mathbb{N}, \ p < q < 6, \ \text{and} \ (p,q) = 1\} \\ &= \frac{1}{2} \min\{|c-1/2|, |c-1/3|, \dots, |c-3/5|, |c-4/5|\} \\ &= \frac{|c-2/3|}{2} \end{split}$$

since, for all the rational numbers that matter, it appears that c is closest to 2/3.

So, for example, if it turns out that $7/10 \in (c - \delta, c + \delta)$, that's okay since

 $|f(7/10) - f(c)| = 1/10 - 0 < 1/6 < \varepsilon.$

In other words, the only rational numbers that we care about correspond to the red dots in the sketch, and by the construction of δ , we made sure that none of these are in the interval $(c - \delta, c + \delta)$.

On the other hand, suppose that $c = \frac{p}{q} \in (0, 1) \cap \mathbb{Q}$. Now let $1/q > \varepsilon > 0$, then for any $\delta > 0$ we can find an irrational number $r \in (c - \delta, c + \delta)$. Thus

$$|f(c) - f(r)| = f(p/q) - 0 = \frac{1}{q} > \varepsilon$$