Let f be a continuous function on $I=[a, b]$. Show that the function f^{*} defined by $f^{*}(x)=\sup \{f(y): a \leq y \leq x\}$, for all $x \in[a, b]$, is an increasing continuous function on $[a, b]$. See Figure 1.

Figure 1: Graph of f versus f^{*}

First observe that if $A \leq B \leq C \leq D$, then, for example,

$$
\begin{equation*}
D-A \geq C-B \geq 0, \text { etc. } \tag{1}
\end{equation*}
$$

We also note that since f is continuous and $[a, x]$ closed and bounded for any $x \in[a, b]$, that the supremum is actually a maximum (by the Max-Min Theorem). In other words, for each $x \in[a, b], \exists x_{0} \in[a, x]$ such that

$$
\begin{equation*}
f^{*}(x)=f\left(x_{0}\right) \tag{2}
\end{equation*}
$$

Finally, note that $f^{*}(x) \geq f(x)$ for all $x \in[a, b]$.
Let $a \leq s<t \leq b$. Then

$$
\{f(y): a \leq y \leq s\} \subset\{f(y): a \leq y \leq t\}
$$

So by exercise 1.4.7 from the text

$$
f^{*}(s)=\sup \{f(y): a \leq y \leq s\} \leq \sup \{f(y): a \leq y \leq t\}=f^{*}(t)
$$

In other words, f^{*} is increasing.

Method 1 - Show f^{*} is (Pointwise) Continuous:

Now let $\varepsilon>0$ and fix $c \in[a, b]$. Then by the continuity of $f($ at $c)$, there is a $\delta=\delta(c)>0$ such that

$$
|x-c|<\delta \quad \Longrightarrow \quad|f(x)-f(c)|<\varepsilon / 2
$$

Case 1: $c<x<c+\delta$. In this case, $f^{*}(x) \geq f^{*}(c)$ since f^{*} is increasing. If we have equality, there is nothing to show. Otherwise, we suppose that $f^{*}(x)>f^{*}(c)$. So by (2), $f^{*}(x)=f\left(x_{0}\right)$ for some $a \leq x_{0} \leq x$. However, we must have $x \geq x_{0}>c$ else $f^{*}(x)=f^{*}(c)$. Thus, $\left|x_{0}-c\right|<\delta$. Now

$$
f\left(x_{0}\right)=f^{*}(x)>f^{*}(c) \geq f(c)
$$

So by (1),

$$
\left|f^{*}(x)-f^{*}(c)\right| \leq\left|f\left(x_{0}\right)-f(c)\right|<\varepsilon / 2<\varepsilon
$$

Case 2: $c-\delta<x<c$. In this case, $f^{*}(x) \leq f^{*}(c)$ since f^{*} is increasing. If we have equality, there is nothing to show. Otherwise, we suppose that $f^{*}(x)<f^{*}(c)$. So by (2), $f^{*}(c)=f\left(c_{0}\right)$ for some $a \leq c_{0} \leq c$. However, we must have $x<c_{0} \leq c$ else $f^{*}(x)=f^{*}(c)$. In other words, we may assume that $\left|x-c_{0}\right|<\delta$. Now

$$
f(x) \leq f^{*}(x)<f^{*}(c)=f\left(c_{0}\right)
$$

So by (1),

$$
\begin{equation*}
\left|f^{*}(x)-f^{*}(c)\right| \leq\left|f(x)-f\left(c_{0}\right)\right| \tag{3}
\end{equation*}
$$

And now we are stuck. Can you explain why? Think about this before proceeding.

The problem is that our earlier choice of $\delta>0$ specifically depended on c. We don't (immediately) know anything about the $\delta=\delta\left(c_{0}\right)>0$ required to control the last expression above. Although we can circumvent this by appealing to the uniform continuity of f (since I is closed and bounded), there is an easier way. Notice that since $c-\delta<x<c_{0} \leq c$, we also have $\left|c_{0}-c\right|<\delta$. Now continuing with (3),

$$
\begin{aligned}
\left|f^{*}(x)-f^{*}(c)\right| & \leq\left|f(x)-f\left(c_{0}\right)\right| \\
& \leq|f(x)-f(c)|+\left|f(c)-f\left(c_{\mathrm{O}}\right)\right| \\
& <\varepsilon / 2+\varepsilon / 2
\end{aligned}
$$

It follows that f^{*} is continuous at c.

Figure 2: f versus f^{*}

Method 2: Prove f^{*} is Uniformly Continuous:

By Theorem 8 (in class), f is uniformly continuous. So let $\varepsilon>0$. There exists a $\delta>0$ so that $|y-x|<\delta$ implies $|f(y)-f(x)|<\varepsilon$.

Now let $y>x$ with $|y-x|<\delta$. If $f^{*}(y)=f^{*}(x)$ there is nothing to prove. Suppose then that $f^{*}(y)>f^{*}(x)$. So there exists y_{0} with $x<y_{0} \leq y$ such that $f^{*}(y)=f\left(y_{0}\right)$. (Why must $y_{0}>x$)? Also, there exists $x_{0} \leq x$ such that $f^{*}(x)=f\left(x_{0}\right)$. We have

$$
x_{0} \leq x<y_{0} \leq y
$$

If $x=x_{0}$ we are done since we now have $\left|x_{0}-y_{0}\right| \leq|x-y|<\delta$. So by the uniform continuity of f

$$
\left|f^{*}(x)-f^{*}(y)\right|=\left|f\left(x_{0}\right)-f\left(y_{0}\right)\right|<\varepsilon
$$

On the other hand, suppose that $x_{0}<x<y_{0} \leq y$. Then $f(x)<f\left(x_{0}\right)<f\left(y_{0}\right)$. By the IVP there exists $c \in\left(x, y_{0}\right)$ such that $f(c)=f\left(x_{0}\right)$ (see Figure 2). It follows that

$$
\left|f^{*}(x)-f^{*}(y)\right|=\left|f(c)-f\left(y_{0}\right)\right|<\varepsilon
$$

since $\left|c-y_{0}\right|<|x-y|<\delta$. Now since uniform continuity implies continuity, we are done.
Remark. Method 2 is easier to follow and it illustrates a very nice use of the IVP.

