
Limit Theorems for Sequences

Convergent Sequences

A sequence {an} is bounded if there is a real number M such that |an| ≤M
for all n ∈ N.

Theorem Convergent sequences are bounded.

Proof: Let {an} be a convergent sequence with limit s and let ε = 623. Then
there exists a natural number N such that

n > N implies |sn − s| < 623 (1)

Thus

|sn| = |sn − s + s| ≤ |sn − s|+ |s| ≤ 623 + |s|

for all n > N .

Now let M be the maximum of the finite set

{623 + |s|, |a1|, |a2|, . . . , |aN |}.

Then |an| ≤M for all n ∈ N, as desired.

Note: The last proof makes use of a very important idea:

All but a finite number of terms in a convergent sequence are arbi-
trarily close to the limit.
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We will exploit this idea again below.

Proposition

Suppose that limn→∞ bn = b 6= 0. Then there is a natural number N such that
for all n > N , bn 6= 0.

Proof: Without loss of generality we may assume b > 0. Now let ε = b
2 > 0.

So there is an N ∈ N such that for all n > N , |bn − b| < b
2 . Rearranging we see

that this implies bn > b
2 > 0, as desired.

Note: The proof is similar if b < 0. This proposition is used in the next theorem.

The Limit Laws

Theorem

Suppose that limn→∞ an = a and limn→∞ bn = b and let k be a real number.
Then

(a) limn→∞ kan = ka

(b) limn→∞(an + bn) = a + b

(c) limn→∞ (anbn) = ab

(d) limn→∞

(
an

bn

)
= a

b
, b 6= 0, bn 6= 0 for all n ∈ N

Before proving (d), let’s look at an example.

Example: Show that limn→∞ an = 0 if and only if limn→∞ a2
n = 0.

Proof: If limn→∞ an = L 6= 0, then by (c), limn→∞ a2
n = L2 6= 0. This

establishs the right to left implication. We leave the forward implication as an
easy exercise.

The Limit Laws (cont)

To prove property (d), we first note that by the previous proposition, there
exists N1 ∈ N, such that for all n > N1, |bn| > |b|

2 . Now let ε > 0. There exists
N2, N3 ∈ N such that
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|an − a| < ε|b|
4 , provided n > N2

|bn − b| < εb2

4|a| , provided n > N3

Now let n > N = max{N1, N2, N3}, then

∣∣∣∣an

bn
− a

b

∣∣∣∣ = |anb− abn|
|bnb|

= |anb− ab + ab− abn|
|bnb|

≤ 1
|bnb|

(|b||an − a|+ |a||b− bn|)

<
2
b2 (|b||an − a|+ |a||b− bn|)

<
2|b|
b2

(
ε|b|
4

)
+ 2|a|

b2

(
εb2

4|a|

)
= ε

See the text for the proofs of the other 3 properties.

Note: There is a mistake (call it an omission) in the above proof. Can you find
it?

Basic Examples

Theorem

(a) limn→∞
1

np = 0 for p > 0.

(b) limn→∞ an = 0 if |a| < 1.

(c) limn→∞ n1/n = 1.

(d) limn→∞ a1/n = 1 for a > 0.

We prove (c) below. See the text for the remaining proofs.

Basic Examples (cont)

To prove (c), we let an = n1/n−1 and notice that an > 0 for n > 1. Rearranging
we obtain
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n1/n = 1 + an

=⇒ n = (1 + an)n

= 1 + nan + n(n− 1)
2 a2

n + positive terms

> 1 + n(n− 1)
2 a2

n

It follows that 0 < a2
n < 2/n so that a2

n → 0 as n→∞ by the Squeeze Law (see
exercise 8.5). Notice that by the above example, that an → 0. Thus

lim
n→∞

n1/n = lim
n→∞

(n1/n − 1 + 1)

= lim
n→∞

an + lim
n→∞

1

= 0 + 1

Infinite Limits

Definition We write limn→∞ an = ∞ provided that for each M > 0 there
exists an N such that n > N implies an > M .

Roughly speaking, the above definition suggests that the terms in the sequence
eventually exceed any upper bound. Such limits are said to diverge to infinity.
Note: There is a similar definition for diverging to negative infinity. See the
text.

Here is a useful characterization.

Theorem Let an be a sequence of positive numbers. Then limn→∞ an =∞ if
and only if limn→∞ 1/an = 0.

See the text for a proof.

Example limn→∞ an =∞ for a > 1.

Observe that if a > 1 then 1/a < 1 and we could prove this by appealing to the
last theorem and Part b from the example above. However, with Bernoulli’s
inequality, the direct proof is almost trivial.

Write a = 1 + c where c > 0. Then by Bernoulli’s Inequality we have
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an = (1 + c)n > 1 + nc

Now let M > 1. By the Archimedian Property, there is a natural number N
such that Nc > M − 1. It follows that for all n > N

an = (1 + c)n > 1 + nc

> 1 + Nc

> M

as desired.

Notice that together with the useful characterization above, this last result
now establishes Part b from the basic examples theorem.
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