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3.17 Limits and Continuity

Definition. Limits

Let f be defined on D ⊂ R. We say that f(x) has limit L as x approaches c ∈ R, provided that for
every ε > 0 there is a δ = δ(c, ε) > 0 such that if x ∈ D and

0 < |x − c| < δ then |f(x) − L| < ε(1)

In this case we write

lim
x→c

f(x) = L(2)

Remark.

i. c need not be an element in D = Dom(f).

ii. Verifying (2) by way of (1) is called an ε-δ argument.

iii. Notice that it’s enough to show that (1) holds for some positive ε1 with ε1 < ε1. For example, we
sometimes assume that 1 ≥ ε > 0.

Example 1. Use an ε-δ argument to prove lim
x→4 3x = 12.

Proof. Given ε > 0, we must find a δ > 0 so that (1) holds. It is important to observe that δ will usually
depend on the given ε and the value of c (4 in this problem). We claim that δ = ε/3 will suffice. Now
suppose that 0 < |x − 4| < δ = ε/3. Then

|f(x) − L| = |3x − 12| = 3|x − 4| < 3 × ε

3
= ε
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Definition. Continuity

Let f be defined on D ⊂ R. We say that f(x) is continuous at c ∈ D, provided that for every ε > 0
there is a δ = δ(c, ε) > 0 such that if x ∈ D and

|x − c| < δ then |f(x) − f(c)| < ε(3)

Equivalently, we say f is continuous at c provided that

lim
x→c

f(x) = f(c)(4)

Compare (3) and (4) with (1) and (2). In particular, notice that it is necessary (but not sufficient) that
c ∈ D = Dom(f) in the definition of continuity.

Remark.

i. A function is simply called continuous if it is continuous at each point in its domain.

ii If f is not continuous at c, we say that f is discontinuous at c and that c is a point of
discontinuity of f .

Example 2. Let f(x) = 3x. Use an ε-δ argument to prove that f is continuous at 4.

Since f(4) = 12 we actually proved this in Example 1. That is, we proved that

lim
x→4

f(x) = 12 = f(4).

The following inequality is used below.

Example 3. Let 0 < ε < 1. Prove that
√

4 + ε − 2 < 2 −
√

4 − ε.

Since 0 < ε < 1 it follows that

0 < 16 − ε2 < 16
√

16 − ε2 < 4

2
√

16 − ε2 < 8

(4 + ε) + 2
√

16 − ε2 + (4 − ε) < 16

(√
4 + ε +

√
4 − ε

)2

< 16
√

4 + ε +
√

4 − ε < 4
√

4 + ε − 2 < 2 −
√

4 − ε
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Example 4. Prove that g(x) = x2 is continuous at 2.

Proof. Given 1 > ε > 0. We let δ =
√

4 + ε − 2 (which is positive since ε > 0). Now to verify (3), we
consider two cases. First suppose that 2 < x < 2 + δ. Then

(5) 0 < x − 2 < δ =
√

4 + ε − 2

so that

2 < x <
√

4 + ε

4 < x2 < 4 + ε

0 < x2 − 4 < ε

Now suppose that 2 − δ < x < 2. Rearranging yields

(6) 0 < 2 − x < δ

Now by Example 3, δ < 2 −
√

4 − ε. Thus

0 < 2 − x < 2 −
√

4 − ε ⇐⇒ −2 < −x < −
√

4 − ε

Rearranging yields
√

4 − ε < x < 2

4 − ε < x2 < 4

− ε < x2 − 4 < 0

Now (5) and (6) are equivalent to 0 < |x − 2| < δ. We have shown that

0 < |x − 2| < δ =⇒
∣

∣x2 − 4
∣

∣ < ε.

Since g(2) = 4 we have proven that if |x − 2| < δ, then

|g(x) − g(2)| =
∣

∣x2 − 4
∣

∣ < ε

as desired.
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Here is an easier argument. Notice that if x is “near” 2, then x + 2 should be bounded (above and
below). More precisely, if 0 < δ ≤ 1 say, then |x − 2| < δ implies

−δ < x − 2 < δ

=⇒ 4 − δ < x + 2 < 4 + δ < 5

=⇒ |x + 2| < 5

Now let’s revisit the previous example. Once again show that g(x) = x2 is continuous at 2.

Proof. Let ε > 0. Now choose δ = min{1, ε/5}. Then if x satisfies |x − 2| < δ we have

|x2 − 4| = |x + 2||x − 2|
≤ 5|x − 2| (since δ ≤ 1)

< 5
(ε

5

)

(since δ ≤ ε/5)

= ε

Remark. Notice that the number 5 was unimportant. The important point is that |x + 2| is bounded by
some M > 0.
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Theorem 1. Let f be a continuous function and k be any real number. Then k · f and |f | are also
continuous functions.

The following proposition will be used frequently when dealing with limits of continuous functions.

Proposition 2. Suppose that f is continuous at c and that f(c) > L for some L ∈ R. Then there is a
δ > 0 such that f(x) > L for all x ∈ (c − δ, c + δ) ∩ Dom(f).

Proof. By considering the continuous function f(x) − L, it is enough to prove the special case when
L = 0. Now let ε = f(c)/2 > 0. Since f is continuous at c, there is a δ > 0 such that |x − c| < δ and
x ∈ Dom(f) implies

−ε < f(x) − f(c) < ε

Focusing on the left inequality we see that

−f(c)

2
< f(x) − f(c)

In other words

f(x) >
f(c)

2

The next result will help us create new continuous functions from old ones.

Theorem 3. Suppose that f and g are continuous at c ∈ Dom(f) ∩ Dom(g). Then so are f ± g, fg,
and f/g (provided g(c) 6= 0).

Proof. You can find proofs of the first two results in the text. The proof that f/g is continuous will be
broken up into 3 parts. The motivation for the (sometimes) mysterious choices for ε below was
presented during class.

Part 1. Apply Theorem 2 to the continuous function |g(x)| to conclude there is δ0 > 0 such that
|g(x)| > |g(c)|/2 > 0 whenever |x − c| < δ0. It follows that

(7) |x − c| < δ0 =⇒ 1

|g(x)| <
2

|g(c)|
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Part 2. Now let ε > 0. By the continuity of f , there is a δ1 > 0 such that

|f(x) − f(c)| <
|g(c)|ε

4

whenever |x − c| < δ1. Also, by the continuity of g, there is a δ2 > 0 such that

|g(x) − g(c)| <
|g(c)|2ε

4(|f(c)| + 1)

whenever |x − c| < δ2.

Part 3. Now let δ = min{δ0, δ1, δ2}. Then |x − c| < δ implies
∣

∣

∣

∣

f(x)

g(x)
− f(c)

g(c)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x)g(c) − f(c)g(x)

g(x)g(c)

∣

∣

∣

∣

=
1

|g(x)g(c)| |f(x)g(c) − f(c)g(c) + f(c)g(c) − f(c)g(x)|

<
2

|g(c)|2 |f(x)g(c) − f(c)g(c)| + |f(c)g(c) − f(c)g(x)|(8)

=
2|g(c)|
|g(c)|2 |f(x) − f(c)| +

2|f(c)|
|g(c)|2 |g(c) − g(x)|

<
2

|g(c)|
|g(c)|ε

4
+

2|f(c)|
|g(c)|2

|g(c)|2ε

4(|f(c)| + 1)
(9)

=
ε

2
+

|f(c)|ε
2(|f(c)| + 1)

<
ε

2
+

ε

2
(10)

Line (8) follows from Part 1 since δ < δ0. Line (9) follows from Part 2 since δ < δ1 and δ < δ2. Finally,
line (10) follows since

|f(c)|
2(|f(c)| + 1)

< 1


