3.17

3.17 Limits and Continuity

Definition.  Limits

Let f be defined on D C R. We say that f(z) has limit L as = approaches ¢ € R, provided that for
every ¢ > O thereisa ¢ = d(c,e) > 0 such thatif x € D and

1) O<l|r—c|<é then |f(z)—L|<e
In this case we write

(2) lim f(z) = L

Tr—cC

Remark.

i. ¢ need not be an element in D = Dom(f).
ii. Verifying (2) by way of (1) is called an -6 argument.

iii. Notice that it's enough to show that (1) holds for some positive ¢, with £; < ¢;. For example, we
sometimes assume that 1 > ¢ > 0.

Example 1. Use an ¢-) argument to prove lim, 4 3x = 12.

Proof. Given ¢ > 0, we must find a 6 > 0 so that (1) holds. It is important to observe that § will usually
depend on the given ¢ and the value of ¢ (4 in this problem). We claim that § = ¢/3 will suffice. Now
suppose that 0 < |z — 4| < d = ¢/3. Then

!f(:v)—L!:\3x—12\:3yx—4y<3><§:5
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Definition.  Continuity

Let f be defined on D C R. We say that f(x) is continuous at c € D, provided that for every ¢ > 0
thereisa é = d(c,e) > 0 such thatif x € D and

(3) |t —c| <6 then |f(z)— flc)]<e
Equivalently, we say f is continuous at ¢ provided that
(@) lim f(z) = f(c)

Compare (3) and (4) with (1) and (2). In particular, notice that it is necessary (but not sufficient) that
¢ € D = Dom(f) in the definition of continuity.

Remark.

i. A function is simply called continuous if it is continuous at each point in its domain.

ii If fis not continuous at ¢, we say that f is discontinuous at ¢ and that ¢ is a point of
discontinuity of f.

Example 2. Let f(x) = 3z. Use an -9 argument to prove that f is continuous at 4.

Since f(4) = 12 we actually proved this in Example 1. That is, we proved that
linrzllf(x) =12 = f(4).

The following inequality is used below.
Example 3. Let0 <e < 1. Provethaty4+c—-2<2—+4—c.

Since 0 < ¢ < 1 it follows that
0<16—e?< 16

V16 —e2 < 4

2v/16 — e2 < 8

(44+¢€)+2V16 — 2+ (4 —¢) < 16

(Vitet+Vi—e) <16

Vid+e++Vi—e<4
Vi+e—-2<2—Vd—¢
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Example 4.  Prove that g(x) = 22 is continuous at 2.

Proof. Given1 > ¢ > 0. We let § = /4 + ¢ — 2 (which is positive since £ > 0). Now to verify (3), we
consider two cases. First suppose that 2 < z < 2+ 4. Then

(5) O<z—-2<d=+v4+ec-2
so that
2<x<Vid+e

4<a’<d+e

O<z?’—4<e

Now suppose that 2 — § < x < 2. Rearranging yields
(6) 0<2—x<9
Now by Example 3, § < 2 — /4 — . Thus
0<2—2<2-Vi—c +—= —2<-a<-—i—¢
Rearranging yields

Vi —e<x<?2
4—ec<a?<4

—e<a?—4<0

Now (5) and (6) are equivalentto 0 < |x — 2| < §. We have shown that

O0<l|r—2/<d = [22—4|<e

Since ¢g(2) = 4 we have proven that if |z — 2| < §, then
l9(2) — 9(2)| = |2* — 4] <&

as desired.
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Here is an easier argument. Notice that if = is “near” 2, then = + 2 should be bounded (above and
below). More precisely, if 0 < § < 1 say, then |z — 2| < ¢ implies

<z —2<9¢
—4-0<x+2<4+6<5h

= |z +2| <5
Now let’s revisit the previous example. Once again show that g(z) = 2 is continuous at 2.

Proof. Let e > 0. Now choose § = min{1,¢/5}. Then if x satisfies |z — 2| < § we have
2% — 4| = |z + 2||z — 2|
< 5|z — 2| (since 0 < 1)
<5 (%) (since 6 < ¢/5)
=c
U

Remark. Notice that the number 5 was unimportant. The important point is that |z + 2| is bounded by
some M > 0.
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Theorem 1. Let f be a continuous function and k be any real number. Then & - f and |f| are also
continuous functions.

The following proposition will be used frequently when dealing with limits of continuous functions.

Proposition 2. Suppose that f is continuous at ¢ and that f(c) > L for some L € R. Then there is a
d > 0 suchthat f(z) > Lforallz € (¢ —d,c+ ) N Dom(f).

Proof. By considering the continuous function f(x) — L, it is enough to prove the special case when
L =0. Now lete = f(c)/2 > 0. Since f is continuous at ¢, there isa § > 0 such that |z — ¢| < § and
x € Dom(f) implies

—e < flz) = flc) <e
Focusing on the left inequality we see that

_ Sl

L < f@) - 10

In other words

The next result will help us create new continuous functions from old ones.

Theorem 3. Suppose that f and g are continuous at ¢ € Dom/(f) N Dom(g). Then so are f + g, fg,
and f/g (provided g(c) # 0).

Proof. You can find proofs of the first two results in the text. The proof that f/g is continuous will be
broken up into 3 parts. The motivation for the (sometimes) mysterious choices for £ below was
presented during class.

Part 1. Apply Theorem 2 to the continuous function |g(x)| to conclude there is §, > 0 such that
lg(x)| > |g(c)|/2 > 0 whenever |z — ¢| < dy. It follows that

1 2
(7) lz—c| <0y = <

lg(@)[ lg(c)]
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Part 2. Now let ¢ > 0. By the continuity of f, there is a §; > 0 such that

(&) — £0) < O

whenever |z — ¢| < §;. Also, by the continuity of ¢, there is a 6, > 0 such that

l9(z) — g(c)| <

whenever |z — ¢| < d,.

Part 3. Now let 6 = min{dy, 41, d2}. Then |z — ¢| < ¢ implies

‘ﬂx :‘ﬂﬂﬂd—f@m@
g(x g(x)g(c)

) _ flo)
) gle)

1
= W\f(x)g(f:) — f(e)g(c) + f(e)g(c) — fle)g(z)]

> @)g(0) = F)g()] + |£()g(e) - F()g(x)]

lg(c)?
2|f(c)]
+ ‘g(c)‘g ‘g(C) - g(l’)’

2 Jg@le | 2@ (o)
®) N R O CCIED

8) <

(10) <

Line (8) follows from Part 1 since ¢ < d,. Line (9) follows from Part 2 since 6 < §; and § < 5. Finally,
line (10) follows since
/()]

2@+ =



