3.17 Limits and Continuity

Definition. Limits

Let f be defined on $D \subset \mathbb{R}$. We say that $f(x)$ has limit L as x approaches $c \in \mathbb{R}$, provided that for every $\varepsilon>0$ there is a $\delta=\delta(c, \varepsilon)>0$ such that if $x \in D$ and

$$
\begin{equation*}
0<|x-c|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon \tag{1}
\end{equation*}
$$

In this case we write

$$
\begin{equation*}
\lim _{x \rightarrow c} f(x)=L \tag{2}
\end{equation*}
$$

Remark.
i. c need not be an element in $D=\operatorname{Dom}(f)$.
ii. Verifying (2) by way of (1) is called an $\varepsilon-\delta$ argument.
iii. Notice that it's enough to show that (1) holds for some positive ε_{1} with $\varepsilon_{1}<\varepsilon_{1}$. For example, we sometimes assume that $1 \geq \varepsilon>0$.

Example 1. Use an $\varepsilon-\delta$ argument to prove $\lim _{x \rightarrow 4} 3 x=12$.

Proof. Given $\varepsilon>0$, we must find a $\delta>0$ so that (1) holds. It is important to observe that δ will usually depend on the given ε and the value of c (4 in this problem). We claim that $\delta=\varepsilon / 3$ will suffice. Now suppose that $0<|x-4|<\delta=\varepsilon / 3$. Then

$$
|f(x)-L|=|3 x-12|=3|x-4|<3 \times \frac{\varepsilon}{3}=\varepsilon
$$

Definition. Continuity

Let f be defined on $D \subset \mathbb{R}$. We say that $f(x)$ is continuous at $c \in D$, provided that for every $\varepsilon>0$ there is a $\delta=\delta(c, \varepsilon)>0$ such that if $x \in D$ and

$$
\begin{equation*}
|x-c|<\delta \text { then } \quad|f(x)-f(c)|<\varepsilon \tag{3}
\end{equation*}
$$

Equivalently, we say f is continuous at c provided that

$$
\begin{equation*}
\lim _{x \rightarrow c} f(x)=f(c) \tag{4}
\end{equation*}
$$

Compare (3) and (4) with (1) and (2). In particular, notice that it is necessary (but not sufficient) that $c \in D=\operatorname{Dom}(f)$ in the definition of continuity.

Remark.
i. A function is simply called continuous if it is continuous at each point in its domain.
ii If f is not continuous at c, we say that f is discontinuous at c and that c is a point of discontinuity of f.

Example 2. Let $f(x)=3 x$. Use an $\varepsilon-\delta$ argument to prove that f is continuous at 4 .

Since $f(4)=12$ we actually proved this in Example 1. That is, we proved that

$$
\lim _{x \rightarrow 4} f(x)=12=f(4)
$$

The following inequality is used below.
Example 3. Let $0<\varepsilon<1$. Prove that $\sqrt{4+\varepsilon}-2<2-\sqrt{4-\varepsilon}$.

Since $0<\varepsilon<1$ it follows that

$$
\begin{aligned}
0<16-\varepsilon^{2} & <16 \\
\sqrt{16-\varepsilon^{2}} & <4 \\
2 \sqrt{16-\varepsilon^{2}} & <8 \\
(4+\varepsilon)+2 \sqrt{16-\varepsilon^{2}}+(4-\varepsilon) & <16 \\
(\sqrt{4+\varepsilon}+\sqrt{4-\varepsilon})^{2} & <16 \\
\sqrt{4+\varepsilon}+\sqrt{4-\varepsilon} & <4 \\
\sqrt{4+\varepsilon}-2 & <2-\sqrt{4-\varepsilon}
\end{aligned}
$$

Example 4. Prove that $g(x)=x^{2}$ is continuous at 2.

Proof. Given $1>\varepsilon>0$. We let $\delta=\sqrt{4+\varepsilon}-2$ (which is positive since $\varepsilon>0$). Now to verify (3), we consider two cases. First suppose that $2<x<2+\delta$. Then

$$
\begin{equation*}
0<x-2<\delta=\sqrt{4+\varepsilon}-2 \tag{5}
\end{equation*}
$$

so that

$$
\begin{aligned}
& 2<x<\sqrt{4+\varepsilon} \\
& 4<x^{2}<4+\varepsilon \\
& 0<x^{2}-4<\varepsilon
\end{aligned}
$$

Now suppose that $2-\delta<x<2$. Rearranging yields

$$
\begin{equation*}
0<2-x<\delta \tag{6}
\end{equation*}
$$

Now by Example 3, $\delta<2-\sqrt{4-\varepsilon}$. Thus

$$
0<2-x<2-\sqrt{4-\varepsilon} \quad \Longleftrightarrow \quad-2<-x<-\sqrt{4-\varepsilon}
$$

Rearranging yields

$$
\begin{aligned}
& \sqrt{4-\varepsilon}<x<2 \\
& 4-\varepsilon<x^{2}<4 \\
& -\varepsilon<x^{2}-4<0
\end{aligned}
$$

Now (5) and (6) are equivalent to $0<|x-2|<\delta$. We have shown that

$$
0<|x-2|<\delta \quad \Longrightarrow \quad\left|x^{2}-4\right|<\varepsilon
$$

Since $g(2)=4$ we have proven that if $|x-2|<\delta$, then

$$
|g(x)-g(2)|=\left|x^{2}-4\right|<\varepsilon
$$

as desired.

Here is an easier argument. Notice that if x is "near" 2 , then $x+2$ should be bounded (above and below). More precisely, if $0<\delta \leq 1$ say, then $|x-2|<\delta$ implies

$$
\begin{gathered}
-\delta<x-2<\delta \\
\Longrightarrow 4-\delta<x+2<4+\delta<5 \\
\Longrightarrow|x+2|<5
\end{gathered}
$$

Now let's revisit the previous example. Once again show that $g(x)=x^{2}$ is continuous at 2 .

Proof. Let $\varepsilon>0$. Now choose $\delta=\min \{1, \varepsilon / 5\}$. Then if x satisfies $|x-2|<\delta$ we have

$$
\begin{aligned}
\left|x^{2}-4\right| & =|x+2||x-2| \\
& \leq 5|x-2| \quad(\text { since } \delta \leq 1) \\
& <5\left(\frac{\varepsilon}{5}\right) \quad(\text { since } \delta \leq \varepsilon / 5) \\
& =\varepsilon
\end{aligned}
$$

Remark. Notice that the number 5 was unimportant. The important point is that $|x+2|$ is bounded by some $M>0$.

Theorem 1. Let f be a continuous function and k be any real number. Then $k \cdot f$ and $|f|$ are also continuous functions.

The following proposition will be used frequently when dealing with limits of continuous functions.
Proposition 2. Suppose that f is continuous at c and that $f(c)>L$ for some $L \in \mathbb{R}$. Then there is a $\delta>0$ such that $f(x)>L$ for all $x \in(c-\delta, c+\delta) \cap \operatorname{Dom}(f)$.

Proof. By considering the continuous function $f(x)-L$, it is enough to prove the special case when $L=0$. Now let $\varepsilon=f(c) / 2>0$. Since f is continuous at c, there is a $\delta>0$ such that $|x-c|<\delta$ and $x \in \operatorname{Dom}(f)$ implies

$$
-\varepsilon<f(x)-f(c)<\varepsilon
$$

Focusing on the left inequality we see that

$$
-\frac{f(c)}{2}<f(x)-f(c)
$$

In other words

$$
f(x)>\frac{f(c)}{2}
$$

The next result will help us create new continuous functions from old ones.
Theorem 3. Suppose that f and g are continuous at $c \in \operatorname{Dom}(f) \cap \operatorname{Dom}(g)$. Then so are $f \pm g, f g$, and f / g (provided $g(c) \neq 0)$.

Proof. You can find proofs of the first two results in the text. The proof that f / g is continuous will be broken up into 3 parts. The motivation for the (sometimes) mysterious choices for ε below was presented during class.

Part 1. Apply Theorem 2 to the continuous function $|g(x)|$ to conclude there is $\delta_{0}>0$ such that $|g(x)|>|g(c)| / 2>0$ whenever $|x-c|<\delta_{0}$. It follows that

$$
\begin{equation*}
|x-c|<\delta_{0} \quad \Longrightarrow \quad \frac{1}{|g(x)|}<\frac{2}{|g(c)|} \tag{7}
\end{equation*}
$$

Part 2. Now let $\varepsilon>0$. By the continuity of f, there is a $\delta_{1}>0$ such that

$$
|f(x)-f(c)|<\frac{|g(c)| \varepsilon}{4}
$$

whenever $|x-c|<\delta_{1}$. Also, by the continuity of g, there is a $\delta_{2}>0$ such that

$$
|g(x)-g(c)|<\frac{|g(c)|^{2} \varepsilon}{4(|f(c)|+1)}
$$

whenever $|x-c|<\delta_{2}$.

Part 3. Now let $\delta=\min \left\{\delta_{0}, \delta_{1}, \delta_{2}\right\}$. Then $|x-c|<\delta$ implies

$$
\begin{aligned}
\left\lvert\, \frac{f(x)}{g(x)}-\right. & \frac{f(c)}{g(c)}\left|=\left|\frac{f(x) g(c)-f(c) g(x)}{g(x) g(c)}\right|\right. \\
& =\frac{1}{|g(x) g(c)|}|f(x) g(c)-f(c) g(c)+f(c) g(c)-f(c) g(x)| \\
& <\frac{2}{|g(c)|^{2}}|f(x) g(c)-f(c) g(c)|+|f(c) g(c)-f(c) g(x)| \\
& =\frac{2|g(c)|}{|g(c)|^{2}}|f(x)-f(c)|+\frac{2|f(c)|}{|g(c)|^{2}}|g(c)-g(x)| \\
& <\frac{2}{|g(c)|} \frac{|g(c)| \varepsilon}{4}+\frac{2|f(c)|}{|g(c)|^{2}} \frac{|g(c)|^{2} \varepsilon}{4(|f(c)|+1)} \\
& =\frac{\varepsilon}{2}+\frac{|f(c)| \varepsilon}{2(|f(c)|+1)} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}
\end{aligned}
$$

Line (8) follows from Part 1 since $\delta<\delta_{0}$. Line (9) follows from Part 2 since $\delta<\delta_{1}$ and $\delta<\delta_{2}$. Finally, line (10) follows since

$$
\frac{|f(c)|}{2(|f(c)|+1)}<1
$$

