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3.18 Properties of Continuous Functions

In section 17, we saw that | f| is continuous whenever f is continuous. In fact, we can say more.

Theorem 1. Suppose that g is continuous at z, and that f is continuous at g(z,), then the composition
f o g is continuous at x,. In other words, the composition of continuous functions is a continuous
function.

Remark. The hypotheses imply that Ran(g) C Dom(f).

Proof. Lete > 0. Also, let y = g(x) and yo = g(x). By the continuity of f (at y,), there is a 6; > 0 such
that y € Dom( f) and

[y —wl <oy = [f(y) —9(w)l <e

By the continuity of ¢ (at z), there is a §, > 0 such that = € Dom(g) and

| —x0] <6y = |g(x) — g(z0)| < d5.

In other words, for ¢ > 0 there isa § = ¢, > 0 such that x € Dom(g) and |z — x| < § implies
ly — w0l = lg(z) — g(xo)| < 05
Now if y € Dom( f), then this last inequality implies

[F(9(x)) = fg(@o))| = [f(y) — f(yo)| <€

as desired.

Theorem 2. The Intermediate Value Theorem

Suppose that f is continuous on an interval I and a,b € I with a < b. Then f attains every value
between f(a) and f(b). (Note: Functions that satisfy this property are said to satisfy the Intermediate
Value Property (IVP).)

Proof. Suppose that L lies between f(a) and f(b). Without loss of generality, we may assume that
f(a) < L < f(b). The theorem asserts that there is a ¢ € (a,b) such that f(c) = L.
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Now let A = {z € [a,b] : f(x) < L}. Clearly A is nonempty since a € A. Also, A is certainly bounded
above by b. So by the Axiom of Completeness, ¢ = sup A < co. We claim that f(c) = L (and ¢ € (a, b)).

Observe that
(1) a<c<b (Why?)

Now there are 3 possibilities. Either f(c) < L, f(c) = L, or f(c) > L.

First suppose that f(¢) > L. Then by Proposition 2 from section 2.17 (class notes), thereisa é > 0 so
that f(z) > L forall x € (¢ — d,c+ ). In particular,

c—d<zr<c = f(z)>L

In other words, AN (c — 4§, ¢) = 0 and hence c is not the supremum of A. Notice that this last result also
shows that ¢ # b in (1).

Now suppose that f(c) < L and lete = L — f(c) > 0. Then there is a ¢ > 0 such that for all
z € (c—9d,c+9), we have

—e < f(x) = fle) <e
fle) = L < fz) = fle) < L= f(e)
Focusing on the right inequality, we see that there is zy € (¢,b) N (¢,c + ) such that

f(fo) < L

But then ¢ is not an upper bound of A. Finally, notice that this also shows that ¢ # a in (1).

It follows that « < ¢ < band f(c) = L, as desired.

The modern definition of continuity and an early version of the Intermediate Value Theorem (with L = 0
were discovered by Bernard Bolzano in the early part of the nineteenth century. It is an interesting fact
that some of the mathematicians at the time attempted to define a continuous function as a function
that satisfies the Intermediate Value Property (IVP). However, we have the following example.
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Example 1. Let f(z) = sin(1/x). Then f has the IVP property but f is not continuous at the origin.

The IVT is important enough that we sketch another proof — one based on the Monotone Convergence
Theorem (or the Nested Interval Property). Once again let we suppose that ¢ < b and that

f(a) < L < f(b) for some L € R. Let ap = a and by = b and bisect the interval [a,, by] to obtain a
midpoint M,. As usual, there are two possibilities. Either f(M,) < L or f(M,) > L. If the former, let

a1 = ag and by = M,. Otherwise, let a; = M, and b; = by. In either case, we have created a new
(nested) interval [a4, b;] such that

f(al) < L < f(bl) and ag < a; < b1 < bo

Now continue the process to create a bounded increasing sequence {a, } and a bounded decreasing
sequence {b,} with the property

(2) fla,) < L < f(b,) and a, 1 <a,<b, <b, 4

for each n € N.

By the MCT, both sequences converge. In fact, they converge to a common limit, call it ¢ (why?). Now
use continuity and (2) to conclude that

£(e) = lim f(a,) <L < Tim f(b,) = f(c)

n—o0 n— o0

The result follows. We leave it as an exercise to fill in the missing detalils.
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Theorem 3. Max-Min Theorem

Let f be a continuous function defined on a closed bounded interval. Then f is bounded. In fact, f
attains its minimum and maximum values somewhere on the interval. More precisely, suppose f is a
continuous function defined on I = [a, b] for some a,b € R. Then there exist ¢, d € I such that

3) fle) < fz) < f(d) forallzel
Note: Whenever (3) holds we say that f attains its minimum and maximum values.

Proof. We first show that there exists an M > 0 such that |f(x)| < M for all = € [a, b]. Equivalently, we
need to show that the following set is bounded above.

A={lf(@)]: 2 €a,b]}

To see this, let y = | f(x)| and suppose A is not bounded above. Then we can find a sequence

{yn} C Asuch y, — oo as n — oco. Now for each n € N, y,, € A so there is a corresponding z,, € [a, ]
such that y,, = | f(z,,)|. Now the sequence {z,} is bounded since it is contained in [a, b]. So by the
Bolzano-Weierstrass Theorem, there is a subsequence {z,, } such that lim;_,. z,, = ¢ € [a,b]. The
continuity of | f| implies that limy_, | f(z,, )| = |f(c)| € R. In other words, we have found a convergent
subsequence {y,, } of {y,}. This is impossible. It follows that A is bounded.

Now we focus on the first inequality in (3). This time we dispense with the introduction of an
intermediate variable (y,, above). So let

B={f(x):xelabl}#0

Since B is bounded, o = inf B is finite. By the alternative characterization of the infimum, for each
n € N, there is an element in B, call it f(z,), such that

1
a< flz,) <a+ —
n
It follows that
f(z,) > aoasn— .

Now observe that the sequence {z,} is bounded. Once again, by the Bolzano-Weierstrass Theorem,
there is a subsequence {z,, } such that limj_,., z,,, = ¢ for some ¢ € [a, b]. So by the continuity of f, we
must have

f(c) = lim f(z,,)= lim f(z,) =a=infB

k—o0 n—00
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That is, for all z € [a, V]

fle) < f(=)

The proof that f attains its maximum value is similar and is left as an exercise.



