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3.18 Properties of Continuous Functions

In section 17, we saw that |f | is continuous whenever f is continuous. In fact, we can say more.

Theorem 1. Suppose that g is continuous at x0 and that f is continuous at g(x0), then the composition
f ◦ g is continuous at x0. In other words, the composition of continuous functions is a continuous
function.

Remark. The hypotheses imply that Ran(g) ⊂ Dom(f).

Proof. Let ε > 0. Also, let y = g(x) and y0 = g(x0). By the continuity of f (at y0), there is a δf > 0 such
that y ∈ Dom(f) and

|y − y0| < δf =⇒ |f(y) − g(y0)| < ε.

By the continuity of g (at x0), there is a δg > 0 such that x ∈ Dom(g) and

|x − x0| < δg =⇒ |g(x) − g(x0)| < δf .

In other words, for ε > 0 there is a δ = δg > 0 such that x ∈ Dom(g) and |x − x0| < δ implies

|y − y0| = |g(x) − g(x0)| < δf

Now if y ∈ Dom(f), then this last inequality implies

|f(g(x)) − f(g(x0))| = |f(y) − f(y0)| < ε

as desired.

Theorem 2. The Intermediate Value Theorem

Suppose that f is continuous on an interval I and a, b ∈ I with a < b. Then f attains every value
between f(a) and f(b). (Note: Functions that satisfy this property are said to satisfy the Intermediate
Value Property (IVP).)

Proof. Suppose that L lies between f(a) and f(b). Without loss of generality, we may assume that
f(a) < L < f(b). The theorem asserts that there is a c ∈ (a, b) such that f(c) = L.
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Now let A = {x ∈ [a, b] : f(x) < L}. Clearly A is nonempty since a ∈ A. Also, A is certainly bounded
above by b. So by the Axiom of Completeness, c = sup A < ∞. We claim that f(c) = L (and c ∈ (a, b)).

Observe that

(1) a ≤ c ≤ b (Why?)

Now there are 3 possibilities. Either f(c) < L, f(c) = L, or f(c) > L.

First suppose that f(c) > L. Then by Proposition 2 from section 2.17 (class notes), there is a δ > 0 so
that f(x) > L for all x ∈ (c − δ, c + δ). In particular,

c − δ < x < c =⇒ f(x) > L

In other words, A ∩ (c − δ, c) = ∅ and hence c is not the supremum of A. Notice that this last result also
shows that c 6= b in (1).

Now suppose that f(c) < L and let ε = L − f(c) > 0. Then there is a δ > 0 such that for all
x ∈ (c − δ, c + δ), we have

−ε < f(x) − f(c) < ε

f(c) − L < f(x) − f(c) < L − f(c)

Focusing on the right inequality, we see that there is x0 ∈ (c, b) ∩ (c, c + δ) such that

f(x0) < L

But then c is not an upper bound of A. Finally, notice that this also shows that c 6= a in (1).

It follows that a < c < b and f(c) = L, as desired.

The modern definition of continuity and an early version of the Intermediate Value Theorem (with L = 0
were discovered by Bernard Bolzano in the early part of the nineteenth century. It is an interesting fact
that some of the mathematicians at the time attempted to define a continuous function as a function
that satisfies the Intermediate Value Property (IVP). However, we have the following example.
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Example 1. Let f(x) = sin (1/x). Then f has the IVP property but f is not continuous at the origin.

The IVT is important enough that we sketch another proof – one based on the Monotone Convergence
Theorem (or the Nested Interval Property). Once again let we suppose that a < b and that
f(a) < L < f(b) for some L ∈ R. Let a0 = a and b0 = b and bisect the interval [a0, b0] to obtain a
midpoint M0. As usual, there are two possibilities. Either f(M0) ≤ L or f(M0) ≥ L. If the former, let
a1 = a0 and b1 = M0. Otherwise, let a1 = M0 and b1 = b0. In either case, we have created a new
(nested) interval [a1, b1] such that

f(a1) ≤ L ≤ f(b1) and a0 ≤ a1 < b1 ≤ b0

Now continue the process to create a bounded increasing sequence {an} and a bounded decreasing
sequence {bn} with the property

(2) f(an) ≤ L ≤ f(bn) and an−1 ≤ an < bn ≤ bn−1

for each n ∈ N.

By the MCT, both sequences converge. In fact, they converge to a common limit, call it c (why?). Now
use continuity and (2) to conclude that

f(c) = lim
n→∞

f(an) ≤ L ≤ lim
n→∞

f(bn) = f(c)

The result follows. We leave it as an exercise to fill in the missing details.
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Theorem 3. Max-Min Theorem

Let f be a continuous function defined on a closed bounded interval. Then f is bounded. In fact, f
attains its minimum and maximum values somewhere on the interval. More precisely, suppose f is a
continuous function defined on I = [a, b] for some a, b ∈ R. Then there exist c, d ∈ I such that

(3) f(c) ≤ f(x) ≤ f(d) for all x ∈ I

Note: Whenever (3) holds we say that f attains its minimum and maximum values.

Proof. We first show that there exists an M > 0 such that |f(x)| ≤ M for all x ∈ [a, b]. Equivalently, we
need to show that the following set is bounded above.

A = {|f(x)| : x ∈ [a, b]}

To see this, let y = |f(x)| and suppose A is not bounded above. Then we can find a sequence
{yn} ⊂ A such yn → ∞ as n → ∞. Now for each n ∈ N, yn ∈ A so there is a corresponding xn ∈ [a, b]
such that yn = |f(xn)|. Now the sequence {xn} is bounded since it is contained in [a, b]. So by the
Bolzano-Weierstrass Theorem, there is a subsequence {xnk

} such that limk→∞ xnk
= c ∈ [a, b]. The

continuity of |f | implies that limk→∞ |f(xnk
)| = |f(c)| ∈ R. In other words, we have found a convergent

subsequence {ynk
} of {yn}. This is impossible. It follows that A is bounded.

Now we focus on the first inequality in (3). This time we dispense with the introduction of an
intermediate variable (yn above). So let

B = {f(x) : x ∈ [a, b]} 6= ∅

Since B is bounded, α = inf B is finite. By the alternative characterization of the infimum, for each
n ∈ N, there is an element in B, call it f(xn), such that

α ≤ f(xn) < α +
1

n

It follows that
f(xn) → α as n → ∞.

Now observe that the sequence {xn} is bounded. Once again, by the Bolzano-Weierstrass Theorem,
there is a subsequence {xnk

} such that limk→∞ xnk
= c for some c ∈ [a, b]. So by the continuity of f , we

must have

f(c) = lim
k→∞

f(xnk
) = lim

n→∞

f(xn) = α = inf B
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That is, for all x ∈ [a, b]
f(c) ≤ f(x)

The proof that f attains its maximum value is similar and is left as an exercise.


