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3.19 Uniform Continuity

Definition. Uniform Continuity

Let f be defined on D ⊂ R. We say that f(x) is uniformly continuous on D, provided that for
every ε > 0 there is a δ = δ(ε) > 0 such that if x, y ∈ D with

(1) |x − y| < δ then |f(x) − f(y)| < ε

Remark. So uniform continuity is a global property. For each ε > 0 we must find a single δ > 0,
independent of x and y, so that (1) holds.

Example 1. Let m, b ∈ R. Prove that f(x) = mx + b is uniformly continuous on R.

Proof. Given ε > 0, we must find a δ > 0 so that (1) holds. We claim that δ = ε/(|m| + 1) will
suffice. Now suppose that |x − y| < δ. Then

|f(x) − f(y)| = |(mx + b) − (my + b)|

= |m| |x − y|

< |m| ×
ε

|m| + 1

< ε

It is easy to see that uniform continuity implies continuity since

|f(x) − f(y)| ≤ |f(x) − f(c)| + |f(c) − f(y)|

for any c ∈ Dom(f). However, the converse is not true. Consider the next example.
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Example 2. Show that f(x) = x2 is not uniformly continuous. Let δ > 0 and choose x > 1/δ.
Now let y = x + δ/2. Then |x − y| = δ/2 < δ, however,

|f(x) − f(y)| = |x2 − y2| = |x + y| |x − y|

= (x + y)
δ

2
> 2x

δ

2

>
2

δ

δ

2
= 1

Rather the sketch the graph of z = f(x + δ/2) − f(x) in 3-dimensions, we will sketch a few
graphs for a given value of (the parameter) δ in 2-dimensions. So let

Fδ(x) = f(x + δ/2) − f(x)

Figure 1 shows the graphs of y = Fδ(x) for δ = 1/2, 1/5, 1/10.
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Figure 1: The Graphs of y = Fδ(x)

So the general idea is this: If f were absolutely continuous, then if we chose δ > 0 small
enough, then |f(x) − f(y)| could be made small as long as |x − y| < δ. However, the sketch
makes clear that this won’t work. For example, if δ = 1/5, then

x > 1/δ implies f

(

x +
1/5

2

)

− f(x) > 1.
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It is possible that continuity plus an additional condition will guarantee uniform continuity.
Although not completely necessary, such a discussion is enhanced by a deeper understanding
of the structure of subsets of the real line.

Point Set Topology

Definition. A set U ⊂ R is called open if for every x ∈ U there is a δ > 0 such that
(x − δ, x + δ) ⊂ U . A set is called closed if it is the compliment of an open set. That is, F ⊂ R is
closed if F c = R \ F is an open set.

Theorem 1. Let A and B be open sets in R. Then A ∪ B and A ∩ B are open.

Theorem 2. Let F and G be closed sets in R. Then F ∪ G and F ∩ G are also closed.

Example 3. Let a, b ∈ R.

a. R and ∅ are both open and closed.

b. (a, b), (−∞, b), and (a, ∞) are examples of open sets.

c. [a, b], (−∞, b], and [a, ∞) are examples of closed sets.

d. The singleton set {a} is closed.

The following examples show that Theorems 1 and 2 can only be partially extended.

Example 4.

a.
∞
⋃

n=1

[

1

n
,

n

n + 1

]

= (0, 1)

b.
∞
⋂

n=1

(

−1

n
,
n + 1

n

)

= [0, 1]

However, we do have

Theorem 3. Let {Un} be a sequence of open sets. Then

a.
⋃∞

j=1
Uj is open.

b. For each n ∈ N,
⋂n

j=1
Uj is open.
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Theorem 4. Let {Fn} be a sequence of closed sets. Then

a.
⋂∞

j=1
Fj is closed.

b. For each n ∈ N,
⋃n

j=1
Fj is closed.

Theorem 5. Let F ⊂ R. Then F is closed if and only F contains all of its limit points.

Definition. Let A ⊂ R. A collection Γ of open sets is called an open cover of A if

A ⊂
⋃

O∈Γ

O

Theorem 6. Let A = [a, b] be a closed bounded interval and let Γ be an open cover of A. Then
there is a finite number of elements of Γ that cover A. That is,

A ⊂
n
⋃

j=1

Uj

for some finite subset {U1, U2, . . . , Un} of elements from Γ.

Note: The above statement is usually shortened to “Let A be a closed bounded interval. Then
every open cover of A has a finite subcover”.

Proof. Let Γ be an open cover of A and define

E = {x ∈ [a, b] : [a, x] has a finite subcover}

E is nonempty since a ∈ E. E is also bounded above by b, so a ≤ c = sup E ≤ b. First we claim
that c ∈ E. If the claim is true, then there is a finite subset {U1, U2, . . . , Un} ⊂ Γ such that
[a, c] ⊂

⋃n
j=1

Uj.

Now suppose that c < b and choose a element U ∈ Γ with c ∈ U . Since U is an open set, there
is an ε1 > 0 such that (c − ε1, c + ε1) ⊂ U . Let ε = min{ε1, b − c}. Then c < c + ε/2 < b and
{U1, U2, . . . , Un, U} is a finite subcover of [a, c + ε/2] contrary to our choice of c. It follows that
c = b.

To complete the proof we must show that c ∈ E. Since Γ is an open cover of A (and since
c ∈ [a, b]), there is an element in V ∈ Γ such that c ∈ V . Since V is open there is an ε > 0 such
that (c − ε, c + ε) ⊂ V . And since c = sup E, there is an x0 ∈ E such that c − ε < x0 ≤ c.
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Now x0 ∈ E implies that [a, x0] ⊂
⋃n

j=1
Uj for some finite subset {U1, U2, . . . , Un} ⊂ Γ. Also,

[x0, c] ⊂ V . Thus

(2) [a, c] ⊂

(

V ∪
n
⋃

j=1

Uj

)

In other words, c ∈ E.

Definition. A set A is called compact if every open cover of A has a finite subcover.

Theorem 6 says that every closed bounded interval is compact. Actually, we can say more.

Theorem 7. Heine-Borel

A subset of R is compact if and only if it is closed and bounded.

Remark. The theorem actually holds in higher dimensions (i.e., Rn). However, there are metric
spaces that contain closed and bounded sets that are not compact. Notice also that Theorem 7
is more general since it is not restricted to closed intervals, but holds for arbitrary closed (and
bounded) sets.

Example 2 was disappointing. However, we have the following partial converse.

Theorem 8. Let K be a compact subset of the real numbers and suppose that f : K −→ R is a
continuous function. Then f is uniformly continuous on K.

Proof. Let ε > 0. By the continuity of f , there exists δx = δ(x, ε) > 0 such that

(3) |y − x| < δx =⇒ |f(y) − f(x)| < ε/2

This holds for each x ∈ K.

Now let Vδx
(x) = (x − δx/2, x + δx/2). Then the collection Γ = {Vδx

(x) : x ∈ K} is an open cover
of K since

K ⊂
⋃

x∈K

Vδx
(x)

The justification for choosing a radius of δ/2 for each the intervals is as follows. Looking ahead
our plan is to invoke the Heine-Borel Theorem to obtain a finite subcollection from Γ. If we halve
the size of each interval ahead of time, then keeping x and y sufficiently close should force both
to belong to the same interval. For example, if x ∈ (x0 − δx0

/2, x0 + δx0
/2) then

y ∈ (x0 − δx0
, x0 + δx0

) as shown below.
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x0

x0 − δx0
/2

x0 − δx0
x0 + δx0

x y
b bb b

Vδx0
(x0)

|x − y| < δx0
/2

Since K is compact, Theorem 7 implies that there is a finite subcollection of Γ, say
{Vδ1

(x1), Vδ2
(x2), . . . , Vδn

(xn)}, such that

K ⊂
n
⋃

j=1

Vδj
(xj)

Let δ = 1

2
min{δ1, δ2, . . . , δn} and let x, y ∈ K with |y − x| < δ. Now x ∈ Vδj

(xj) for some
1 ≤ j ≤ n. But then

|y − xj| ≤ |y − x| + |x − xj|

< δ + δj/2

≤ δj/2 + δj/2 = δj

Hence by (3),

|f(y)−f(xj)| < ε/2

It follows that

|f(y) − f(x)| = |f(y) − f(xj) + f(xj) − f(x)|

≤ |f(y) − f(xj)| + |f(xj) − f(x)|

< ε/2 + ε/2
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We finish this section by presenting another proof of Theorem 8.

Proof. Let ε > 0. If f is not uniformly continuous, then for each n ∈ N we can find a pair of
points xn, yn ∈ K such that |xn − yn| < 1/n but

(4) |f(xn) − f(yn)| ≥ ε.

So we have constructed a pair of sequences {xn} and {yn} with the property that
limn→∞(xn − yn) = 0.

Since K is compact, the Heine-Borel Theorem tells us that it is closed and bounded. Hence
{xn} ⊂ K is a bounded sequence and by the Bolzano-Weierstrass Theorem, has a convergent
subsequence {xnk

}, with limk→∞ xnk
= c. It follows that c is a limit point of K, and since K is

closed, we must have c ∈ K.

Clearly,

lim
k→∞

ynk
= lim

k→∞
(ynk

− xnk
+ xnk

)

= lim
k→∞

(ynk
− xnk

) + lim
k→∞

xnk

= 0 + lim
k→∞

xnk
= c

Now by the continuity of f at c and (4), we have

0 = |f(c) − f(c)|

= | lim
k→∞

f(xnk
) − lim

k→∞
f(ynk

)|

= lim
k→∞

|f(xnk
) − f(ynk

)| ≥ ε

This is absurd. We conclude that f is uniformly continuous on K.


