3.19 Uniform Continuity

Definition. Uniform Continuity

Let f be defined on $D \subset \mathbb{R}$. We say that $f(x)$ is uniformly continuous on D, provided that for every $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that if $x, y \in D$ with

$$
\begin{equation*}
|x-y|<\delta \quad \text { then } \quad|f(x)-f(y)|<\varepsilon \tag{1}
\end{equation*}
$$

Remark. So uniform continuity is a global property. For each $\varepsilon>0$ we must find a single $\delta>0$, independent of x and y, so that (1) holds.

Example 1. Let $m, b \in \mathbb{R}$. Prove that $f(x)=m x+b$ is uniformly continuous on \mathbb{R}.

Proof. Given $\varepsilon>0$, we must find a $\delta>0$ so that (1) holds. We claim that $\delta=\varepsilon /(|m|+1)$ will suffice. Now suppose that $|x-y|<\delta$. Then

$$
\begin{aligned}
|f(x)-f(y)| & =|(m x+b)-(m y+b)| \\
& =|m||x-y| \\
& <|m| \times \frac{\varepsilon}{|m|+1} \\
& <\varepsilon
\end{aligned}
$$

It is easy to see that uniform continuity implies continuity since

$$
|f(x)-f(y)| \leq|f(x)-f(c)|+|f(c)-f(y)|
$$

for any $c \in \operatorname{Dom}(f)$. However, the converse is not true. Consider the next example.

Example 2. Show that $f(x)=x^{2}$ is not uniformly continuous. Let $\delta>0$ and choose $x>1 / \delta$. Now let $y=x+\delta / 2$. Then $|x-y|=\delta / 2<\delta$, however,

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right|=|x+y||x-y| \\
& =(x+y) \frac{\delta}{2}>2 x \frac{\delta}{2} \\
& >\frac{2}{\delta} \frac{\delta}{2}=1
\end{aligned}
$$

Rather the sketch the graph of $z=f(x+\delta / 2)-f(x)$ in 3 -dimensions, we will sketch a few graphs for a given value of (the parameter) δ in 2 -dimensions. So let

$$
F_{\delta}(x)=f(x+\delta / 2)-f(x)
$$

Figure 1 shows the graphs of $y=F_{\delta}(x)$ for $\delta=1 / 2,1 / 5,1 / 10$.

Figure 1: The Graphs of $y=F_{\delta}(x)$

So the general idea is this: If f were absolutely continuous, then if we chose $\delta>0$ small enough, then $|f(x)-f(y)|$ could be made small as long as $|x-y|<\delta$. However, the sketch makes clear that this won't work. For example, if $\delta=1 / 5$, then

$$
x>1 / \delta \text { implies } f\left(x+\frac{1 / 5}{2}\right)-f(x)>1 .
$$

It is possible that continuity plus an additional condition will guarantee uniform continuity. Although not completely necessary, such a discussion is enhanced by a deeper understanding of the structure of subsets of the real line.

Point Set Topology

Definition. A set $U \subset \mathbb{R}$ is called open if for every $x \in U$ there is a $\delta>0$ such that $(x-\delta, x+\delta) \subset U$. A set is called closed if it is the compliment of an open set. That is, $F \subset \mathbb{R}$ is closed if $F^{c}=\mathbb{R} \backslash F$ is an open set.

Theorem 1. Let A and B be open sets in \mathbb{R}. Then $A \cup B$ and $A \cap B$ are open.

Theorem 2. Let F and G be closed sets in \mathbb{R}. Then $F \cup G$ and $F \cap G$ are also closed.

Example 3. Let $a, b \in \mathbb{R}$.
a. \mathbb{R} and \emptyset are both open and closed.
b. $(a, b),(-\infty, b)$, and (a, ∞) are examples of open sets.
c. $[a, b],(-\infty, b]$, and $[a, \infty)$ are examples of closed sets.
d. The singleton set $\{a\}$ is closed.

The following examples show that Theorems 1 and 2 can only be partially extended.

Example 4.

a. $\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, \frac{n}{n+1}\right]=(0,1)$
b. $\bigcap_{n=1}^{\infty}\left(\frac{-1}{n}, \frac{n+1}{n}\right)=[0,1]$

However, we do have
Theorem 3. Let $\left\{U_{n}\right\}$ be a sequence of open sets. Then
a. $\bigcup_{j=1}^{\infty} U_{j}$ is open.
b. For each $n \in \mathbb{N}, \bigcap_{j=1}^{n} U_{j}$ is open.

Theorem 4. Let $\left\{F_{n}\right\}$ be a sequence of closed sets. Then
a. $\bigcap_{j=1}^{\infty} F_{j}$ is closed.
b. For each $n \in \mathbb{N}, \bigcup_{j=1}^{n} F_{j}$ is closed.

Theorem 5. Let $F \subset \mathbb{R}$. Then F is closed if and only F contains all of its limit points.

Definition. Let $A \subset \mathbb{R}$. A collection Γ of open sets is called an open cover of A if

$$
A \subset \bigcup_{O \in \Gamma} O
$$

Theorem 6. Let $A=[a, b]$ be a closed bounded interval and let Γ be an open cover of A. Then there is a finite number of elements of Γ that cover A. That is,

$$
A \subset \bigcup_{j=1}^{n} U_{j}
$$

for some finite subset $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ of elements from Γ.

Note: The above statement is usually shortened to "Let A be a closed bounded interval. Then every open cover of A has a finite subcover".

Proof. Let Γ be an open cover of A and define

$$
E=\{x \in[a, b]:[a, x] \text { has a finite subcover }\}
$$

E is nonempty since $a \in E$. E is also bounded above by b, so $a \leq c=\sup E \leq b$. First we claim that $c \in E$. If the claim is true, then there is a finite subset $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \subset \Gamma$ such that $[a, c] \subset \bigcup_{j=1}^{n} U_{j}$.

Now suppose that $c<b$ and choose a element $U \in \Gamma$ with $c \in U$. Since U is an open set, there is an $\varepsilon_{1}>0$ such that $\left(c-\varepsilon_{1}, c+\varepsilon_{1}\right) \subset U$. Let $\varepsilon=\min \left\{\varepsilon_{1}, b-c\right\}$. Then $c<c+\varepsilon / 2<b$ and $\left\{U_{1}, U_{2}, \ldots, U_{n}, U\right\}$ is a finite subcover of $[a, c+\varepsilon / 2]$ contrary to our choice of c. It follows that $c=b$.

To complete the proof we must show that $c \in E$. Since Γ is an open cover of A (and since $c \in[a, b])$, there is an element in $V \in \Gamma$ such that $c \in V$. Since V is open there is an $\varepsilon>0$ such that $(c-\varepsilon, c+\varepsilon) \subset V$. And since $c=\sup E$, there is an $x_{0} \in E$ such that $c-\varepsilon<x_{0} \leq c$.

Now $x_{0} \in E$ implies that $\left[a, x_{0}\right] \subset \bigcup_{j=1}^{n} U_{j}$ for some finite subset $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \subset \Gamma$. Also, $\left[x_{0}, c\right] \subset V$. Thus

$$
\begin{equation*}
[a, c] \subset\left(V \cup \bigcup_{j=1}^{n} U_{j}\right) \tag{2}
\end{equation*}
$$

In other words, $c \in E$.

Definition. A set A is called compact if every open cover of A has a finite subcover.

Theorem 6 says that every closed bounded interval is compact. Actually, we can say more.

Theorem 7. Heine-Borel

A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Remark. The theorem actually holds in higher dimensions (i.e., \mathbb{R}^{n}). However, there are metric spaces that contain closed and bounded sets that are not compact. Notice also that Theorem 7 is more general since it is not restricted to closed intervals, but holds for arbitrary closed (and bounded) sets.

Example 2 was disappointing. However, we have the following partial converse.
Theorem 8. Let K be a compact subset of the real numbers and suppose that $f: K \longrightarrow \mathbb{R}$ is a continuous function. Then f is uniformly continuous on K.

Proof. Let $\varepsilon>0$. By the continuity of f, there exists $\delta_{x}=\delta(x, \varepsilon)>0$ such that

$$
\begin{equation*}
|y-x|<\delta_{x} \quad \Longrightarrow \quad|f(y)-f(x)|<\varepsilon / 2 \tag{3}
\end{equation*}
$$

This holds for each $x \in K$.
Now let $V_{\delta_{x}}(x)=\left(x-\delta_{x} / 2, x+\delta_{x} / 2\right)$. Then the collection $\Gamma=\left\{V_{\delta_{x}}(x): x \in K\right\}$ is an open cover of K since

$$
K \subset \bigcup_{x \in K} V_{\delta_{x}}(x)
$$

The justification for choosing a radius of $\delta / 2$ for each the intervals is as follows. Looking ahead our plan is to invoke the Heine-Borel Theorem to obtain a finite subcollection from Γ. If we halve the size of each interval ahead of time, then keeping x and y sufficiently close should force both to belong to the same interval. For example, if $x \in\left(x_{0}-\delta_{x_{0}} / 2, x_{0}+\delta_{x_{0}} / 2\right)$ then $y \in\left(x_{0}-\delta_{x_{0}}, x_{0}+\delta_{x_{0}}\right)$ as shown below.

Since K is compact, Theorem 7 implies that there is a finite subcollection of Γ, say $\left\{V_{\delta_{1}}\left(x_{1}\right), V_{\delta_{2}}\left(x_{2}\right), \ldots, V_{\delta_{n}}\left(x_{n}\right)\right\}$, such that

$$
K \subset \bigcup_{j=1}^{n} V_{\delta_{j}}\left(x_{j}\right)
$$

Let $\delta=\frac{1}{2} \min \left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\}$ and let $x, y \in K$ with $|y-x|<\delta$. Now $x \in V_{\delta_{j}}\left(x_{j}\right)$ for some $1 \leq j \leq n$. But then

$$
\begin{aligned}
\left|y-x_{j}\right| & \leq|y-x|+\left|x-x_{j}\right| \\
& <\delta+\delta_{j} / 2 \\
& \leq \delta_{j} / 2+\delta_{j} / 2=\delta_{j}
\end{aligned}
$$

Hence by (3),

$$
\left|f(y)-f\left(x_{j}\right)\right|<\varepsilon / 2
$$

It follows that

$$
\begin{aligned}
|f(y)-f(x)| & =\left|f(y)-f\left(x_{j}\right)+f\left(x_{j}\right)-f(x)\right| \\
& \leq\left|f(y)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)-f(x)\right| \\
& <\varepsilon / 2+\varepsilon / 2
\end{aligned}
$$

We finish this section by presenting another proof of Theorem 8.

Proof. Let $\varepsilon>0$. If f is not uniformly continuous, then for each $n \in \mathbb{N}$ we can find a pair of points $x_{n}, y_{n} \in K$ such that $\left|x_{n}-y_{n}\right|<1 / n$ but

$$
\begin{equation*}
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon \tag{4}
\end{equation*}
$$

So we have constructed a pair of sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with the property that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$.

Since K is compact, the Heine-Borel Theorem tells us that it is closed and bounded. Hence $\left\{x_{n}\right\} \subset K$ is a bounded sequence and by the Bolzano-Weierstrass Theorem, has a convergent subsequence $\left\{x_{n_{k}}\right\}$, with $\lim _{k \rightarrow \infty} x_{n_{k}}=c$. It follows that c is a limit point of K, and since K is closed, we must have $c \in K$.

Clearly,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} y_{n_{k}} & =\lim _{k \rightarrow \infty}\left(y_{n_{k}}-x_{n_{k}}+x_{n_{k}}\right) \\
& =\lim _{k \rightarrow \infty}\left(y_{n_{k}}-x_{n_{k}}\right)+\lim _{k \rightarrow \infty} x_{n_{k}} \\
& =0+\lim _{k \rightarrow \infty} x_{n_{k}}=c
\end{aligned}
$$

Now by the continuity of f at c and (4), we have

$$
\begin{aligned}
0 & =|f(c)-f(c)| \\
& =\left|\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)-\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)\right| \\
& =\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \varepsilon
\end{aligned}
$$

This is absurd. We conclude that f is uniformly continuous on K.

