4.23 Power Series

Recall the geometric series

$$
\begin{equation*}
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots \tag{1}
\end{equation*}
$$

As we saw earlier, the series (1) diverges if the common ratio $|x|>1$ and converges if $|x|<1$. In fact, for all $x \in(-1,1)$ this series has the "closed form" representation

$$
\begin{equation*}
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad-1<x<1 \tag{2}
\end{equation*}
$$

Also, the series is clearly divergent if $x=1$ since

$$
1+1+\cdots+1+\cdots=\infty
$$

Finally, for $x=-1$ we have

$$
\begin{equation*}
1-1+1-1+\cdots+(-1)^{n+1}+\cdots \tag{3}
\end{equation*}
$$

which is also divergent since the terms do not approach 0 . We'll return to this case later.

Power Series and Convergence

Equation (1) is an example of a power series. Formally, we have
Definition. Power Series, Center, and Coefficients A power series about $x=a$ is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots \tag{4}
\end{equation*}
$$

The center a and coefficients $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ are constants.

Remark.
(i) For many examples the center is chosen to be 0 .
(ii) Notice that every power series converges (trivially) at its center. The question is, "for what other x-values does the series in (4) converge?".

For example, the series in (1) is a power series centered at $x=0$ and the coefficients are $c_{0}=1, c_{1}=1, \ldots, c_{n}=1, \ldots$. That is,

$$
\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} 1 \cdot(x-0)^{n}
$$

Example 1. Testing for Convergence

For which values of x does the following series converge?

$$
\sum_{n=0}^{\infty}(2 x)^{n}=\sum_{n=0}^{\infty} 2^{n} x^{n}
$$

Notice that the center is 0 and the coefficients are $c_{n}=2^{n}$. We try the Ratio Test (Actually, the Root Test is a better choice here!). Let $a_{n}=(2 x)^{n}$. Then

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(2 x)^{n+1}}{(2 x)^{n}}\right| \\
& =|2 x|
\end{aligned}
$$

It follows that the series converges absolutely if

$$
|2 x|<1
$$

Notice that, by the Ratio Test, this series diverges for all $|x|>1 / 2$. In general, the end points must be always be explicitly checked. In this example, the series also diverges at $\pm 1 / 2$ as one can easily verify.
The interval $(-1 / 2,1 / 2)$ is called the interval of convergence.

Example 2. Testing for Convergence (cont.)

For which values of x does the following series converge?

$$
\sum_{n=1}^{\infty} \frac{(3 x-5)^{n}}{\sqrt{n}}
$$

In this example the center is $a=5 / 3$ and $c_{n}=3^{n} / \sqrt{n}$. Again we try the Ratio Test. Let $a_{n}=(3 x-5)^{n} / \sqrt{n}$. Then

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(3 x-5)^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{(3 x-5)^{n}}\right| \\
& =|3 x-5|
\end{aligned}
$$

It follows that the series converges absolutely if $\rho<1$, that is if

$$
\begin{aligned}
-1 & <3 x-5<1 \\
\Longrightarrow & x \in(4 / 3,2) \text { or } \\
& x \in(a-1 / 3, a+1 / 3)=I
\end{aligned}
$$

Remark. Once again, I is called the interval of convergence. Also, the number, $1 / 3$, is called the radius of convergence. It is not difficult to verify the the series diverges for $x \geq 2$ and $x<4 / 3$. Also, notice that the series converges conditionally at $x=4 / 3$ by Leibniz's Theorem.

Theorem 1. The Convergence Theorem for Power Series

If the power series $\sum a_{n} x^{n}$ converges for $x=c \neq 0$, then the series converges absolutely for all x with $|x|<|c|$. If the series diverges for some $x=d$, then it diverges for all x with $|x|>d$.

Corollary 2. Corollary to Theorem 1
The convergence of the series $\sum a_{n}(x-a)^{n}$ has only one of three possibilities.
(i) There is a positive number R (called the radius of convergence) such that the series diverges for all x with $|x-a|>R$ but converges absolutely for all x with $|x-a|<R$. The series must be explicitly tested at the end points $x=a \pm R$.
(ii) The series converges absolutely for all x. (In this case, $R=\infty$.)
(iii) The series converges at $x=a$ only and diverges elsewhere. (In this case, $R=0$.)

Remark. If $\sum c_{n}(x-a)^{n}$ converges for $x \in(a-R, a+R), R>0$ then the power series defines a function f :

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad a-R<x<a+R \tag{5}
\end{equation*}
$$

Example 3. Geometric Series

Earlier we saw that the series $\sum_{n=0}^{\infty} x^{n}$ converged absolutely on the interval $(-1,1)$. So for all $x \in(-1,1)$ this series defines a function, say f. We have

$$
f(x)=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1
$$

In fact, $f(x)$ has the "closed" form.

$$
f(x)=\frac{1}{1-x}, \quad-1<x<1
$$

Example 4. Find the interval of convergence for the power series

$$
\begin{equation*}
1-x+x^{2}-x^{3}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \tag{6}
\end{equation*}
$$

It is easy to see (by the ratio test) that the series in (6) has the same interval of convergence as the series in the previous example. Also

$$
\begin{aligned}
\frac{1}{1+x} & =\frac{1}{1-(-x)} \\
& =1-x+x^{2}-x^{3}+x^{4}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{n}
\end{aligned}
$$

for $x \in(-1,1)$. It follows that the series in (6) defines a function g with

$$
\begin{equation*}
g(x)=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=\frac{1}{1+x}, \quad x \in(-1,1) \tag{7}
\end{equation*}
$$

It is worth noting that

$$
\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} \frac{1}{1+x}=1 / 2 \neq \sum_{n=0}^{\infty}(-1)^{n}
$$

Theorem 3. Term-by-Term Differentiation Theorem

Suppose that (5) holds. That is, suppose

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad a-R<x<a+R
$$

Then f has derivatives of all orders inside the interval of convergence. In fact, we differentiate term-by-term. That is,

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n \cdot c_{n}(x-a)^{n-1} \\
f^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) \cdot c_{n}(x-a)^{n-2}
\end{aligned}
$$

and so on. Each of the derived series converging at each point in $(a-R, a+R)$.

Example 5. Find the power series expansion of each of the following about $a=0$. What is the interval of convergence?
(a) $\frac{1}{1+x^{2}}$
(b) $\frac{x}{\left(1+x^{2}\right)^{2}}$

As we saw in Example 4,

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}+\cdots
$$

The substitution $x \rightarrow x^{2}$ to gives

$$
\begin{aligned}
\frac{1}{1+x^{2}} & =1-x^{2}+\left(x^{2}\right)^{2}-\left(x^{2}\right)^{3}+\left(x^{2}\right)^{4}+\cdots \\
& =1-x^{2}+x^{4}-x^{6}+x^{8}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n+1} x^{2 n}
\end{aligned}
$$

and this series converges for all $-1<x^{2}<1$. That is, for $-1<x<1$.

For part (b) we let $f(x)=1 /\left(1+x^{2}\right)$. Then

$$
f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}
$$

So by part (a)

$$
\begin{aligned}
\frac{x}{\left(1+x^{2}\right)^{2}} & =\frac{-1}{2} f^{\prime}(x) \\
& =\frac{-1}{2} \frac{d}{d x}\left(1-x^{2}+x^{4}-x^{6}+x^{8}+\cdots\right) \\
& =\frac{-1}{2}\left(0-2 x+4 x^{3}-6 x^{5}+8 x^{7}+\cdots\right)
\end{aligned}
$$

by Theorem 3. Since the power series in (a) converges for all $-1<x<1$, the series in (b) must have the same interval of convergence.

Example 6. Let

$$
\begin{equation*}
h(x)=\sum_{n=1}^{\infty}(-1)^{n+1} n x^{n} \tag{8}
\end{equation*}
$$

(a) Find the radius and interval of convergence. In other words, find the domain of h

It follows from a straight-forward application of the ratio test that the series converges (absolutely) for all $|x|<1$. Hence the series in (8) defines a differentiable function on $(-1,1)$.
(b) Show that $\lim _{x \rightarrow 1^{-}} h(x)=1 / 4$.

Let

$$
\begin{aligned}
g(x) & =\sum_{n=0}^{\infty}(-1)^{n+1} x^{n} \\
& =-1+x-x^{2}+x^{3}+\cdots \\
& =\frac{-1}{1+x}, \quad-1<x<1
\end{aligned}
$$

So by Theorem 3

$$
\begin{aligned}
g^{\prime}(x) & =1-2 x+3 x^{2}-4 x^{3}+\cdots \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} n x^{n-1} \\
& =\frac{1}{(1+x)^{2}}, \quad-1<x<1
\end{aligned}
$$

Now observe that

$$
\begin{aligned}
h(x) & =\sum_{n=1}^{\infty}(-1)^{n+1} n x^{n} \\
& =x \sum_{n=1}^{\infty}(-1)^{n+1} n x^{n-1} \\
& =x g^{\prime}(x) \\
& =\frac{x}{(1+x)^{2}}, \quad-1<x<1
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} \frac{x}{(1+x)^{2}}=1 / 4, \quad(\text { Why?) } \tag{9}
\end{equation*}
$$

Remark. In section 2.15 we noted that the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n=1-2+3-4+\cdots
$$

diverged by the $n^{\text {th }}$ term test. It follows that

$$
h(1)=\sum_{n=1}^{\infty}(-1)^{n+1} n(1)^{n}=\sum_{n=1}^{\infty}(-1)^{n+1} n
$$

does not exist. So h is not (left) continuous at $x=1$ even though it has a (left-hand) limit there.

To elaborate further, let $k(x)=x /(1+x)^{2}$. Then $k(x)$ is defined for all real $x \neq-1$ but, the function $h(x)$, given in (8), is defined only for $x \in(-1,1)$. In particular, $h(x) \neq k(x)$.

On the other hand, if we restrict ourselves to $x \in(-1,1)$, then the two functions are equal. We used this fact to evaluate the limit in (9).

Summability Theory

The previous example touches on a subject called Summability Theory. A series $\sum_{n=0}^{\infty} a_{n}$ is said to be (Abel) summable (to L) if
(a) The power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for all $|x|<1$ and,
(b) $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow L$ as $x \rightarrow 1^{-}$.

In the last example we showed that the divergent series $\sum(-1)^{n+1} n$ is Abel summable to $1 / 4$.

The fact the convergent series are necessarily (Abel) summable was proven by N . H. Abel in 1826.

Theorem 4. (Abel)
Suppose that $\sum_{n=0}^{\infty} a_{n}$ converges to a real number, say L. Then the (power) series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for all $x \in(-1,1)$ and

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n}=L \tag{10}
\end{equation*}
$$

Before proceeding with the proof, it is useful to rewrite the Abel sum in a more convenient form. As usual, let $s_{n}=\sum_{j=0}^{n} a_{j}$. Observe that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} & =a_{0}+\sum_{n=1}^{\infty} a_{n} x^{n} \\
& =s_{0}+\sum_{n=1}^{\infty} \underbrace{\left(s_{n}-s_{n-1}\right)}_{a_{n}} x^{n} \\
& =s_{0}+\sum_{n=1}^{\infty} s_{n} x^{n}-\sum_{n=1}^{\infty} s_{n-1} x^{n} \\
& =s_{0}+\sum_{n=1}^{\infty} s_{n} x^{n}-\sum_{n=0}^{\infty} s_{n} x^{n+1} \\
& =\sum_{n=0}^{\infty} s_{n} x^{n}-\sum_{n=0}^{\infty} s_{n} x^{n+1} \\
& =\sum_{n=0}^{\infty} s_{n}\left(x^{n}-x^{n+1}\right) \\
& =(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}
\end{aligned}
$$

Proof. We leave it as an exercise to show that

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{11}
\end{equation*}
$$

converges for all $x \in(-1,1)$.
To prove (ii) above, we proceed in much the same way as we did in the proof of Cesàro's Theorem (Section 2.14-15).

Let $\varepsilon>0$. Now choose N so large that $\left|s_{n}-L\right|<\varepsilon$ whenever $n \geq N$. Then

$$
\begin{aligned}
&|f(x)-L|=\left|(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}-L\right| \\
&=\left|(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}-L(1-x) \sum_{n=0}^{\infty} x^{n}\right| \\
&=\left|(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}-(1-x) \sum_{n=0}^{\infty} L x^{n}\right| \\
& \leq(1-x) \sum_{n=0}^{\infty}\left|s_{n}-L\right| x^{n} \\
&=(1-x) \sum_{n=0}^{N-1} \underbrace{\left|s_{n}-L\right|}_{\text {bounded }} x^{n}+(1-x) \sum_{n=N}^{\mid \underbrace{}_{<\varepsilon}} \underbrace{}_{n}-L \mid \\
& s_{n}^{n} \\
&<(1-x) K \sum_{n=0}^{N-1} x^{n}+(1-x) \varepsilon \sum_{n=N}^{\infty} x^{n} \\
&<(1-x) K \sum_{n=0}^{N-1} 1+(1-x) \varepsilon \sum_{n=0}^{\infty} x^{n} \\
&=(1-x) K N+(1-x) \frac{\varepsilon}{1-x} \\
&=(1-x) K N+\varepsilon
\end{aligned}
$$

Now let $x \rightarrow 1^{-}$and the result follows.

It is interesting to compare the Abel sum with the Cesàro sum (from Section 2.14-15). Let $p(j)=1-j / n, j=0,1,2 \ldots n-1$. Given a (formal) series $\sum_{n=0}^{\infty} a_{n}$, its Cesàro sum is defined by

$$
\begin{aligned}
\sigma_{n} & =\sum_{j=0}^{n-1}\left(1-\frac{j}{n}\right) a_{j} \\
& =a_{0} p(0)+\sum_{j=1}^{n-1} a_{j} p(j) \\
& =s_{0} p(0)+\sum_{j=1}^{n-1}\left(s_{j}-s_{j-1}\right) p(j) \\
& =s_{0} p(0)+\sum_{j=1}^{n-1} s_{j} p(j)-\sum_{j=1}^{n-1} s_{j-1} p(j) \\
& =\sum_{j=0}^{n-1} s_{j} p(j)-\sum_{j=0}^{n-1} s_{j} p(j+1), \quad(\text { since } p(n)=0) \\
& =\sum_{j=0}^{n-1} s_{j}(p(j)-p(j+1)) \\
& =\sum_{j=0}^{n-1} s_{j}\left(1-\frac{j}{n}-1+\frac{j+1}{n}\right) \\
& =\frac{1}{n} \sum_{j=0}^{n-1} s_{j} \\
& =\frac{1}{\sum_{j=0}^{n-1} 1} \sum_{j=0}^{n-1}\left(s_{j} \times 1\right)
\end{aligned}
$$

And its Abel sum is given by

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} & =(1-x) \sum_{n=0}^{\infty} s_{n} x^{n} \\
& =\frac{1}{\sum_{n=0}^{\infty} x^{n}} \sum_{n=0}^{\infty} s_{n} x^{n}
\end{aligned}
$$

Comparing the final form of both sums, we see that Cesàro and Abel sums represent a sort of "averaging" process.

Theorem 5. Term-by-Term Integration Theorem

Suppose that (5) holds. That is, suppose

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

converges for $a-R<x<a+R$. Then

$$
\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

converges for $a-R<x<a+R$ and

$$
\int f(x) d x=\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

for $a-R<x<a+R$

Example 7. Find the power series expansion of $f(x)=\ln (1+x)$. Also, find the interval of convergence.
Observe that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+x} \\
& =1-x+x^{2}-x^{3}+\cdots, \quad-1<x<1
\end{aligned}
$$

It follows by Theorem 5 that

$$
\begin{aligned}
f(x) & =\ln (1+x) \\
& =C+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots, \quad-1<x<1
\end{aligned}
$$

The initial condition $f(0)=\ln 1=0 \Longrightarrow C=0$. Hence

$$
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}, \quad-1<x<1
$$

Recall that the Alternating Harmonic Series converges. Call its limit L. Now we can apply Abel's Theorem (Theorem 4) to conclude that

$$
L=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\lim _{x \rightarrow 1^{-}} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}=\lim _{x \rightarrow 1^{-}} \ln (1+x)=\ln 2
$$

Example 8. Find the power series expansion of

$$
\int \frac{\sin x}{x} d x
$$

about $x=0$.
We know from Calculus that the power series expansion for the sine function about $x=0$ is

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad x \in \mathbb{R}
\end{aligned}
$$

It follows that

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n+1)!}+\cdots
$$

So by Theorem 5,

$$
\begin{aligned}
\int \frac{\sin x}{x} d x=x-\frac{x^{3}}{3(3!)}-\frac{x^{5}}{5(5!)}+\frac{x^{7}}{7(7!)} & \\
& -\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)(2 n+1)!}+\cdots
\end{aligned}
$$

for $n=0,1,2, \ldots$ and the series converges for all $x \in \mathbb{R}$.

