5.28 The Chain Rule

In a first semester calculus class we often say that a differentiable function can be well approximated by its tangent line.
Let us make this more precise. Let f differentiable on an open interval $I=(a, b)$ and let $c \in I$. We define the linearization of f at c by

$$
\begin{equation*}
L(x)=f(c)+f^{\prime}(c) \underbrace{(x-c)}_{\Delta x} \tag{1}
\end{equation*}
$$

We then say

$$
f(x) \approx L(x), \quad \text { for all } x \text { "near" } c \text { (see below). }
$$

Definition. The Differential

Let f differentiable on an open interval $I=(a, b)$ and let $x \in I$. Now let L be as defined in (1). Then we define the differential, $d f$ as the change in $L(x)$ from x to $x+d x$. That is,

$$
\begin{aligned}
d f & =\Delta L=L(x+d x)-L(x) \\
& =f(x)+f^{\prime}(x)((x+d x)-x)-f(x) \\
& =f^{\prime}(x) d x\left(\text { or } f^{\prime}(x) \Delta x\right)
\end{aligned}
$$

Recall that the actual change in $f(x)$ from x to $x+\Delta x$ is $\Delta f=f(x+\delta x)-f(x)$. We then define the Standard Linear Approximation of f by

$$
\Delta f \approx d f
$$

It follows that the error (i.e., the difference between the true change and the estimated change) is

$$
\begin{aligned}
\text { error } & =\Delta f-d f \\
& =f(x+\Delta x)-f(x)-f^{\prime}(x) \Delta x \\
& =\left(\frac{f(x+\Delta x)-f(x)}{\Delta x}-f^{\prime}(x)\right) \Delta x \\
& =\epsilon \Delta x
\end{aligned}
$$

where

$$
\epsilon=\frac{f(x+\Delta x)-f(x)}{\Delta x}-f^{\prime}(x) \rightarrow 0
$$

as $\Delta x \rightarrow 0$.
It follows that f is differentiable at x if and only if

$$
\begin{equation*}
\Delta f=f^{\prime}(x) \Delta x+\epsilon \Delta x \tag{2}
\end{equation*}
$$

where $\epsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.
We are now in position to prove the following theorem.

Theorem 1. The Chain Rule

Suppose that g is differentiable at x and f is differentiable at $g(x)$. Then the composite function $(f \circ g)$ is differentiable at x and

$$
\begin{equation*}
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \tag{3}
\end{equation*}
$$

Proof. Let $u=g(x)$ and $y=f(u)$. By (2) there exists ϵ_{1} and ϵ_{2} such that

$$
\Delta u=\left(g^{\prime}(x)+\epsilon_{1}\right) \Delta x
$$

where $\epsilon_{1} \rightarrow 0$ as $\Delta x \rightarrow 0$ and

$$
\Delta y=\left(f^{\prime}(u)+\epsilon_{2}\right) \Delta u
$$

where $\epsilon_{2} \rightarrow 0$ as $\Delta u \rightarrow 0$. Combining expressions, we obtain

$$
\begin{aligned}
\Delta y & =\left(f^{\prime}(u)+\epsilon_{2}\right)\left(g^{\prime}(x)+\epsilon_{1}\right) \Delta x \\
& =\left(f^{\prime}(u) g^{\prime}(x)+f^{\prime}(u) \epsilon_{1}+g^{\prime}(x) \epsilon_{2}+\epsilon_{1} \epsilon_{2}\right) \Delta x
\end{aligned}
$$

Now we divide by Δx and let $\Delta x \rightarrow 0$ to get

$$
\begin{aligned}
(f \circ g)^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}\left(f^{\prime}(u) g^{\prime}(x)+f^{\prime}(u) \epsilon_{1}+g^{\prime}(x) \epsilon_{2}+\epsilon_{1} \epsilon_{2}\right) \\
& =f^{\prime}(u) g^{\prime}(x)
\end{aligned}
$$

Now since $u=g(x)$ we are done.

