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5.29 The Mean Value Theorem
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We make the simple observation that at each of the indicated points in the sketch
the tangent line has slope 0. If we focus on x1, observe that y = f(x) has a secant
line through the points (a, 0) and (b, 0) that also has a slope of 0. Also notice that
a < x1 < b.
We can make this more precise with the following theorem.

Theorem 1. Rolle’s Theorem
Suppose that f is continuous on the (closed) interval [a, b] and differentiable on
the (open) interval (a, b). Suppose also that f(a) = f(b). Then there is a point
c ∈ (a, b) such that f ′(c) = 0.

Remark. Notice the hypotheses in this theorem:

Suppose that f is continuous on the (closed) interval [a, b] and
differentiable on the (open) interval (a, b).

This particular assumption will be very common for many of the exercises and
theorems throughout the chapter.

Proof. There is no loss in generality in assuming that f(a) = f(b) = 0. If f(x) = 0
for all x ∈ [a, b] there is nothing to prove for then f ′(x) = 0 and we are done.
By Theorem 1 from section 4.1, f attains its minimum and maximum values on
[a, b]. So there are points x1 and x2 such that

m = f(x1) ≤ f(x) ≤ f(x2) = M



5.29 2

for all x ∈ [a, b].
If f is not a constant function then m and M are not both zero. In other words, at
least one of the points x1 or x2 is an interior point. So f has a global (and hence
local) extreme value at an interior point, c.
If f(a) = f(b) = K 6= 0 then we let g(x) = f(x) − k. Then g is is continuous on the
(closed) interval [a, b] and differentiable on the (open) interval (a, b). Also,
g(a) = g(b) = k − k = 0. But g′(x) = f ′(x) so by the results above, there is a point
c ∈ (a, b) such that

0 = g′(c) = f ′(c)

Example 1. Prove that x3 + x − 2 = 0 has exactly one real root.
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The condition that f(a) = f(b) is a bit restrictive. What do we lose by dropping this
assumption?

Theorem 2. The Mean Value Theorem
Suppose that f is continuous on the (closed) interval [a, b] and differentiable on
the (open) interval (a, b). Then there is a point c ∈ (a, b) such that

(1) f ′(c) =
f(b) − f(a)

b − a

Proof. We need to figure out a way to use the previous theorem. Let

g(x) = f(x) +
f(a) − f(b)

b − a
(x − a)

Then

g(a) = f(a) + 0

g(b) = f(b) +
f(a) − f(b)

b − a
(b − a) = f(a)

and g is continuous on the (closed) interval [a, b] and differentiable on the (open)
interval (a, b). Hence g satisfies the hypotheses of Rolle’s Theorem. So there is a
c ∈ (a, b) such

0 = g′(c) = f ′(c) +
f(a) − f(b)

b − a

Rearranging this yields

f ′(c) =
f(b) − f(a)

b − a
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The Mean Value Inequality

Theorem 3. The Mean Value Inequality
Let I = (α, β) be an open interval on R. Suppose that a, b ∈ I with a < b and let
K ≥ 0. If f : I → R is differentiable with f ′(t) ≤ K for all t ∈ I, then

(2) f(b) − f(a) ≤ K(b − a)

Proof. Let ε > 0. According to Exercise 1.3.8 from the text, it suffices to show that

(3) f(b) − f(a) ≤ (K + ε)(b − a).

Suppose the conclusion is false. That is, suppose that
f(b) − f(a) > (K + ε)(b − a). Our plan is derive a contradiction using the
technique from the proof of the Nested Interval Theorem and Cauchy Criterion.
Write Kε = K + ε and let a0 = a and b0 = b. Now bisect the interval [a0, b0] to
obtain the midpoint M0. Observe that

0 < f(b0) − f(a0) − Kε(b0 − a0)

= f(b0) − f(M0) − Kε(b0 − M0) + f(M0) − f(a0) − Kε(M0 − a0).

Now at least one of the following expressions is positive.

f(M0) − f(a0) − Kε(M0 − a0)

f(b0) − f(M0) − Kε(b0 − M0)

If the first expression is positive, let a1 = a0 and b1 = M0. Otherwise, let a1 = M0

and b1 = b0. In either case, we have created a new (nested) interval I1 = [a1, b1]
such that

f(b1) − f(a1) > Kε(b1 − a1) and I1 ⊂ I0 = [a0, b0]

Now continue the process to create a sequence of intervals {In} with the following
properties.

(4) f(bn) − f(an) > Kε(bn − an) and In ⊂ In−1.

Once again, notice that the an form a bounded increasing sequence and the bn

form a bounded decreasing sequence. So by the Monotone Convergence
Theorem, both sequences converge. Now since bn − an → 0 as n → ∞, we have

lim
n→∞

bn = lim
n→∞

(bn − an + an) = lim
n→∞

(bn − an) + lim
n→∞

an = lim
n→∞

an

That is, both sequences have a common limit c ∈ I. Now by the continuity of f on
I,

f(c) = lim
n→∞

f(an) = lim
n→∞

f(bn)
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Since f is differentiable at c, there is a δ > 0 with (c − δ, c + δ) ⊂ (a, b) such
∣

∣

∣

∣

f(c + h) − f(c)

h
− f ′(c)

∣

∣

∣

∣

< ε/2

or

|f(c + h) − f(c) − f ′(c)h| < |h|ε/2

provided 0 < |h| < δ. The last inequality is equivalent to

−|h|ε

2
< f(c + h) − f(c) − f ′(c)h <

|h|ε

2

Now suppose that 0 < h < δ. Focusing on the right inequality, we see that

f(c + h) − f(c) < f ′(c)h +
|h|ε

2

= f ′(c)h +
hε

2

≤ (K + ε/2)h(5)

On the other hand, if −δ < h < 0, we can use the left inequality to obtain

hε

2
=

−|h|ε

2
< f(c + h) − f(c) − f ′(c)h

Rearranging yields

f(c) − f(c + h) < (f ′(c) + ε/2)(−h)

≤ (K + ε/2)(−h)(6)

Now an ր c implies that there exists N1 ∈ N such that c − an < δ for all n ≥ N1.
Likewise, bn ց c implies that there exists N2 ∈ N such that n ≥ N2 implies
bn − c < δ. As usual let N = max{N1, N2}. Then

f(c) − f(aN ) < (K + ε/2)(c − aN )

f(bN ) − f(c) < (K + ε/2)(bN − c)

are immediate consequences of (5) and (6), respectively. Thus

f(bN ) − f(aN ) = f(bN ) − f(c) + f(c) − f(aN )

< (K + ε/2)(bN − c) + (K + ε/2)(c − aN )

= (K + ε/2)(bN − aN)

contrary to (4). The result follows.


