5.31 1

5.31 Convergence of Taylor Series

Let
(1) flo)=> a2’
j=0

be a power series with radius of convergence R > 0 (as usual, R may be +oc). By
the term-by-term differentiation Theorem, f’(z) exists for all |z| < R and

fiw) =2 jae’™

By the same theorem, we know that the above series is differentiable on the
interval (—R, R) and

f'(x) = 50 = Daga™
j=2
Continuing, we obtain
fO@) =750 =1 (= o+ Dagad ™"
j=2
Notice that

so that (1) may be rewritten as

. £ ,
@ ra) = e we crmy
= 7

1. When does a Taylor series converge to its generating function?

2. How accurately can a function be approximated by its Taylor polynomials?

Taylor's Theorem

The following theorem is a generalization of the Mean Value Theorem.
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Theorem 1. Taylor's Theorem

If £ and its first derivatives f', f”, ..., f) are continuous on the closed interval
[a, 2] and ™ is differentiable on the open interval (a, x), then there is a number
¢ € (a, ) such that

3) F(x) = fla) + f(a)(z —a) + f";!“) (e—a)f+ -
f(n) a . f(n+1) c -

Remark. Compare (3) with the text. Note that equation (3) remains unchanged if
the interval [, x] is replaced by the interval [z, a].
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Definition.  Taylor’'s Formula
If f has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x € I,

f"(a)
2

(4) f(z) = fla) + f'(a)(z —a) +
f™(a)

n!

(x—a)?+ -

+ (x —a)" + R,(z)

where the remainder is given by the formula

£

©®) fn(w) = (n+1)!

(x —a)"™!

for some ¢ between a and z.
In other words, Taylor’s theorem says that for each = € I,
f(z) = Fu(z) + Rn(z)

Now if R,(x) — 0 as n — oo for all z € I, we say that the Taylor series generated
by f at a convergesto f on I and

) (g
6) )y =3 L gy
k=0

k!
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Theorem 2.  Taylor Series for e*

. . 2 " _‘X’xn
(7) e_—m+§+ +H+m_25

Proof. We need to prove that the remainder, R, (z) — 0 as n — oo for all . For
x = 0 there is nothing to prove.

Suppose x > 0. Since the exponential is an increasing function, 1 < e¢ < e* for
any c € [0, z|. Hence

f(n+1)(c .
R, (x) = (nTl)') (z —0)"*!
xn—i—l xn—i—l

= a0

Now the right-hand side approaches zero as n — 0. Similarly for x < 0. This
establishes (7). O

By an argument similar to the one given above we also have

$3 1’5 (_1)n $2n+1
8 i = - N L,
(8) e e R IS T

0 n 2n+1
:;: 2n+1

so that

72 4 (_1)nx2n
9 COS$:1_2+J+ +W+...

n=0
which follows either by mimicking the textbook’s proof of (8) or by appealing to the
Term-by-Term Differentiation Theorem from section 10.7.
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Eé‘i’%oéiﬁfé’.rﬁ%en Consequences of Theorem 2.

(20) e*>1+x and

(11 e =cosx +isinz, i=+—1
The latter equation is usually referred to as Euler’s Identity .

Proof. We have equality in (10) if x = 0. For = > 0 we have

2 n

x X
ef=14+z4+—4+--+—+--->1+=x
2! n!

since the omitted terms are all positive. The inequality is obvious for z < —1 since
the right-hand side is negative in that case. If z € (—1,0) then 0 < |z| < 1 and

2n 2n+1 2n
= _ 4 S (1 \x!)>0

2n)! " 2n+ 1) 20\ 2n+1
>0
Thus
33'2 x?’ x2n .1'2”+1
T R G T s TR

$2 x3 x2n 3;.27’14—1
—1 Yoz
+£”(2!+3!)+ +<(2n)!+(2n+1)!)+

>14x

since the parenthetical quantities are positive.
For Euler’s Identity,

- i2x? PBad
e T TR
Ty

2! 3!
172 [E4 ZL‘G
TR TR

=cosz +isinx
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Remark. Making the substitution = — in (11) yields

e m=—1 or ¢e™+1=0

The last equation is often called one of the most beautiful formulas in all of
mathematics.

Estimating the Remainder

Theorem 4. The Remainder Estimation Theorem
If there is a positive constant M such that | (" (¢)| < M for all ¢ between
x and a, inclusive, then the Remainder term in Taylor's Theorem satisfies

(12) | R ()] < M

If this condition holds for every n (and the other conditions of Taylor's Theorem are
satisfied, then the Taylor series converges to the generating function, f. In other
words, (6) holds.
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If the series happens to be alternating, we have the following

Theorem 5.  The Alternating Series Estimation Theorem
If the alternating series > (—1)"*! q,, satisfies the three conditions from Leibniz's
Theorem, then for n > N, the partial sum

Sp=a; —ag+az— -+ (=1)""a,

approximates the sum L of the series with an error whose absolute value is less
the a,.1, i.€., is less than the absolute value of the first unused term.

Remark. In fact, we can say more. Lete, = L — s,,. Then ¢, has the same sign as
the first unused term, a,, 1. The proof is very similar to the argument used to
prove that e* > 1+ z for z € (—1,0).

Example 1. Let f(z) = y/z. Use the Taylor polynomials of order 1 and 4 to
estimate /3/2. How accurate are these estimates?
In section 10.8 we saw that the Taylor Expansion of order 5 about = = 1 was

r—1 1 s 1 s 5 A
(13) 1+ 5 8(x 1)* + 16<I 1) 128(:U 1)
7
+—(z—-1°+0 ((x — 1)6)
256 —
Error Term

Using Theorem 5 we see that
|1 (3/2)] <

and

71 7
N < — « — = —
R4 (3/2)] = 56 32 8192
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It follows that

z—1
and
r—1 1 2 3 5 4
Hence
V3/2 % P (3/2)
=5/4
and
V3/2 % Py (3/2)

1/3 1/3 2
—1+=-(2-1)=2(2-1
3(-1) -5 (G

= 1.22412
Now by the remarks following Theorem 5 we know that
er=/3/2 — P4(3/2)
=/3/2 —1.22412
is a positive number. It follows that the estimate
3/2 =1.22412 + g4 > 1.22412

That is, our estimate is too low.
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To see how good (or bad) these estimates are, we appeal to the Remainder
Estimation Theorem.

1
4x3/2

y=1"@)| =
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It is clear that on the interval I = [1,3/2], | f"(z)| < M = |f"(1)| = 1/4 since the
second derivative is decreasing. It follows that

1[3/2—1""" 1
< 2
IR (3/2)] < (14 1)! 32
Similarly,
0@ < M =150 =22, on1
so that

105 [3/2—1[""" 7
32 (4+1)! 8192

R4 (3/2)] <

In this case, the error estimates obtained using either Theorem 4 or 5 agree.

10



5.31

Now, for example, since

n()en()

we have
\/?_& 3| = \/§—1.22412
2 2 2
= |R4(3/2)]
7
< — 0. 4492
= 3199 0.00085449
or

-

1.22412 — 0.000854492 <4 / - < 1.22412 + 0.000854492

Vs TV
1.22327 1.22498
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