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5.31 Convergence of Taylor Series

Let

(1) f(x) =
∞∑

j=0

ajx
j

be a power series with radius of convergence R > 0 (as usual, R may be +∞). By
the term-by-term differentiation Theorem, f ′(x) exists for all |x| < R and

f ′(x) =
∞∑

j=1

jajx
j−1

By the same theorem, we know that the above series is differentiable on the
interval (−R, R) and

f ′′(x) =
∞∑

j=2

j(j − 1)ajx
j−2

Continuing, we obtain

f (n)(x) =
∞∑

j=2

j(j − 1) · · · (j − n + 1)ajx
j−n

Notice that
f (n)(0) = n(n − 1) · · · (n − n + 1)an = n!an

so that (1) may be rewritten as

(2) f(x) =
∞∑

j=0

f (j)(0)

j!
xj, x ∈ (−R, R)

1. When does a Taylor series converge to its generating function?

2. How accurately can a function be approximated by its Taylor polynomials?

Taylor’s Theorem

The following theorem is a generalization of the Mean Value Theorem.
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Theorem 1. Taylor’s Theorem
If f and its first derivatives f ′, f ′′, . . . , f (n) are continuous on the closed interval
[a, x] and f (n) is differentiable on the open interval (a, x), then there is a number
c ∈ (a, x) such that

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·(3)

· · · +
f (n)(a)

n!
(x − a)n +

f (n+1)(c)

(n + 1)!
(x − a)n+1

Remark. Compare (3) with the text. Note that equation (3) remains unchanged if
the interval [a, x] is replaced by the interval [x, a].
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Definition. Taylor’s Formula
If f has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x ∈ I,

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·(4)

+
f (n)(a)

n!
(x − a)n + Rn(x)

where the remainder is given by the formula

(5) Rn(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

for some c between a and x.

In other words, Taylor’s theorem says that for each x ∈ I,

f(x) = Pn(x) + Rn(x)

Now if Rn(x) → 0 as n → ∞ for all x ∈ I, we say that the Taylor series generated
by f at a converges to f on I and

(6) f(x) =
∞∑

k=0

f (k)(a)

k!
(x − a)k
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Theorem 2. Taylor Series for ex

(7) ex = 1 + x +
x2

2!
+ · · · +

xn

n!
+ · · · =

∞∑

n=0

xn

n!

Proof. We need to prove that the remainder, Rn(x) → 0 as n → ∞ for all x. For
x = 0 there is nothing to prove.
Suppose x > 0. Since the exponential is an increasing function, 1 < ec ≤ ex for
any c ∈ [0, x]. Hence

Rn(x) =
f (n+1)(c)

(n + 1)!
(x − 0)n+1

= ec xn+1

(n + 1)!
≤ ex xn+1

(n + 1)!

Now the right-hand side approaches zero as n → 0. Similarly for x < 0. This
establishes (7).

By an argument similar to the one given above we also have

sin x = x − x3

3!
+

x5

5!
+ · · · +

(−1)n x2n+1

(2n + 1)!
+ · · ·(8)

=

∞∑

n=0

(−1)n x2n+1

(2n + 1)!

so that

cos x = 1 − x2

2!
+

x4

4!
+ · · · +

(−1)nx2n

(2n)!
+ · · ·(9)

=
∞∑

n=0

(−1)nx2n

(2n)!

which follows either by mimicking the textbook’s proof of (8) or by appealing to the
Term-by-Term Differentiation Theorem from section 10.7.
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Proposition 3. Consequences of Theorem 2.
Let x ∈ R. Then

ex ≥ 1 + x and(10)

eix = cos x + i sin x, i =
√

−1(11)

The latter equation is usually referred to as Euler’s Identity .

Proof. We have equality in (10) if x = 0. For x > 0 we have

ex = 1 + x +
x2

2!
+ · · · +

xn

n!
+ · · · > 1 + x

since the omitted terms are all positive. The inequality is obvious for x ≤ −1 since
the right-hand side is negative in that case. If x ∈ (−1, 0) then 0 < |x| < 1 and

x2n

(2n)!
+

x2n+1

(2n + 1)!
=

x2n

(2n)!

(

1 − |x|
2n + 1

)

︸ ︷︷ ︸
>0

> 0

Thus

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · +

x2n

(2n)!
+

x2n+1

(2n + 1)!
+ · · ·

= 1 + x +

(
x2

2!
+

x3

3!

)

+ · · · +

(
x2n

(2n)!
+

x2n+1

(2n + 1)!

)

+ · · ·

= 1 + x +
∞∑

n=1

(
x2n

(2n)!
+

x2n+1

(2n + 1)!

)

> 1 + x

since the parenthetical quantities are positive.
For Euler’s Identity,

eix = 1 + ix +
i2x2

2!
+

i3x3

3!
+ · · ·

= 1 + ix − x2

2!
− i

x3

3!
+ · · ·

= 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

+ i

(

x − x3

3!
+

x5

5!
+ · · ·

)

= cos x + i sin x
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Remark. Making the substitution x = −π in (11) yields

e−iπ = −1 or e−iπ + 1 = 0

The last equation is often called one of the most beautiful formulas in all of
mathematics.

Estimating the Remainder

Theorem 4. The Remainder Estimation Theorem
If there is a positive constant M such that

∣
∣f (n+1)(t)

∣
∣ ≤ M for all t between

x and a, inclusive, then the Remainder term in Taylor’s Theorem satisfies

(12) |Rn(x)| ≤ M
|x − a|n+1

(n + 1)!

If this condition holds for every n (and the other conditions of Taylor’s Theorem are
satisfied, then the Taylor series converges to the generating function, f . In other
words, (6) holds.
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If the series happens to be alternating, we have the following

Theorem 5. The Alternating Series Estimation Theorem
If the alternating series

∑
(−1)n+1 an satisfies the three conditions from Leibniz’s

Theorem, then for n ≥ N , the partial sum

sn = a1 − a2 + a3 − · · · + (−1)n+1 an

approximates the sum L of the series with an error whose absolute value is less
the an+1, i.e., is less than the absolute value of the first unused term.

Remark. In fact, we can say more. Let εn = L − sn. Then εn has the same sign as
the first unused term, an+1. The proof is very similar to the argument used to
prove that ex ≥ 1 + x for x ∈ (−1, 0).

Example 1. Let f(x) =
√

x. Use the Taylor polynomials of order 1 and 4 to
estimate

√

3/2. How accurate are these estimates?
In section 10.8 we saw that the Taylor Expansion of order 5 about x = 1 was

(13) 1 +
x − 1

2
− 1

8
(x − 1)2 +

1

16
(x − 1)3 − 5

128
(x − 1)4

+
7

256
(x − 1)5 + O

(
(x − 1)6

)

︸ ︷︷ ︸

Error Term

Using Theorem 5 we see that

|R1 (3/2)| ≤ 1

8
· 1

4
=

1

32

and

|R4 (3/2)| ≤ 7

256
· 1

32
=

7

8192
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It follows that

P1(x) = 1 +
x − 1

2

and

P4(x) = 1 +
x − 1

2
− 1

8
(x − 1)2 +

1

16
(x − 1)3 − 5

128
(x − 1)4

Hence
√

3/2 ≈ P1 (3/2)

= 5/4

and
√

3/2 ≈ P4 (3/2)

= 1 +
1

2

(
3

2
− 1

)

− 1

8

(
3

2
− 1

)2

+
1

16

(
3

2
− 1

)3

− 5

128

(
3

2
− 1

)4

= 1.22412

Now by the remarks following Theorem 5 we know that

ε4 =
√

3/2 − P4(3/2)

=
√

3/2 − 1.22412

is a positive number. It follows that the estimate
√

3/2 = 1.22412 + ε4 > 1.22412

That is, our estimate is too low.



5.31 9

To see how good (or bad) these estimates are, we appeal to the Remainder
Estimation Theorem.

1 3/2

b
b

y = |f ′′(x)| =
1

4x3/2
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It is clear that on the interval I = [1, 3/2], |f ′′(x)| ≤ M = |f ′′(1)| = 1/4 since the
second derivative is decreasing. It follows that

|R1 (3/2)| ≤ 1

4

|3/2 − 1|1+1

(1 + 1)!
=

1

32

Similarly,

∣
∣f (5)(x)

∣
∣ ≤ M = |f (5)(1)| =

105

32
, on I

so that

|R4 (3/2)| ≤ 105

32

|3/2 − 1|4+1

(4 + 1)!
=

7

8192

In this case, the error estimates obtained using either Theorem 4 or 5 agree.
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Now, for example, since
√

3

2
= P4

(
3

2

)

+ R4

(
3

2

)

we have
∣
∣
∣
∣
∣

√

3

2
− P4

(
3

2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

√

3

2
− 1.22412

∣
∣
∣
∣
∣

= |R4 (3/2)|

≤ 7

8192
≈ 0.000854492

or

1.22412 − 0.000854492
︸ ︷︷ ︸

1.22327

≤
√

3

2
≤ 1.22412 + 0.000854492

︸ ︷︷ ︸
1.22498


