- 1. (5 points) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive terms. The review notes describe 6 distinct convergence tests for the infinite series $\sum_{n=1}^{\infty} a_n$. Name 5 of them.
 - i. Divergence Test
 - ii. Ratio Test
 - iii. Root Test
 - iv. Direct Comparison Test
 - v. Limit Comparison Test
 - vi. Cauchy Condensation Test (not the Cauchy Comparison Test)
- 2. (10 points) Carefully choose one of the convergence tests from the list above and describe it completely. Don't forget to include additional hypotheses if necessary.

Solution:

See www.math.msu.edu/~hensh/courses/320/summer15/handouts/ConvTests-2up.pdf.

3. (10 points) Decide whether each of the following series converge or diverge. Justify your claim.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos(1/n)}{n^2}$$

Solution:

We claim the series converges. To see this, let $b_n = 1/n^2$ and note that $\sum b_n < \infty$ since this is a *p*-series with p = 2 > 1. Now $0 < \cos x \le 1$ for all $x \in [0, 1]$, so that

$$a_n = \frac{\cos(1/n)}{n^2} \le \frac{1}{n^2} = b_n \tag{1}$$

And the result now follows by the Direct Comparison Test. Note that we could also use the Limit Comparison Test. A few comments are in order.

- i. It is useless to conclude that $\frac{\cos(1/n)}{n^2}$ converges. In fact, it converges to zero, but that tells us nothing. We *are* interested in the convergence (or divergence) of $\sum_{n=1}^{\infty} \frac{\cos(1/n)}{n^2}$.
- ii. To be precise in (1), we appeal to the order properties of \mathbb{R} . Specifically, since $1/n^2 > 0$ property **O5** yields

$$0 < \cos(1/n) \le 1 \Longrightarrow 0 < \frac{1}{n^2} \cdot \cos(1/n) \le \frac{1}{n^2} \cdot 1$$

(b) $\sum_{n=1}^{\infty} a_n$, where $a_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} na_n = 1$.

Solution:

We claim that the series diverges. To see this let $b_n = 1/n$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n}{1/n} = \lim_{n \to \infty} na_n = 1 < \infty$$

So by the Limit Comparison Test, the series $\sum a_n$ and $\sum b_n$ both converge or they both diverge. But the latter is the well-known harmonic series, which is known to diverge. It is worth noting that the given limit condition guarantees that $a_n \to 0$ as $n \to \infty$. Can you prove this?