
Math 481 Exam 2 Fall 2023

1. (20 points) Consider the sequence {an}n≥0 defined by the recursion below and answer the questions
that follow.

(1) an+3 = 2an+2 − an, a0 = 1, a1 = 3, a2 = 4

(a) Find the next 3 terms in this sequence.

Solution:

The first 12 terms are 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322.

(b) Find the closed form of the generating function A(x) =
∑

n anx
n.

Solution:

According to the Wilf Rules, (1) is equivalent to the equation

A(x)− 1− 3x− 4x2

x3
= 2

A(x)− 1− 3x

x2
+A(x)

Rearranging yields

A(x)(1− 2x+ x3) = 1 + x− 2x2

Thus

A(x) =
1 + x− 2x2

1− 2x+ x3
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2. (20 points) How many 3-digit positive integers are divisible by at least one of the numbers in the
set {6, 7, 11}? For example, there are ⌊9996 ⌋ − ⌊1006 ⌋ = 166− 16 = 150 3-digit numbers that are
divisible by 6. Express your answer as a positive integer.

Solution:

Throughout this solution an integer is a 3-digit positive integer. Let p6 be the property
that an integer is divisible by 6. Then the number of integers that are divisible by 6 is
N(p6) = 150. Similarly,

N(p7) =

⌊

999

7

⌋

−

⌊

100

7

⌋

= 128

N(p11) =

⌊

999

11

⌋

−

⌊

100

11

⌋

= 81

Similarly,

N(p6p7) = 21

N(p6p11 = 14

N(p7p11) = 11

Finally,

N(p6p7p11) = 2

Now there are 900 3-digit integers, so by PIE, the number of integers that are not
divisible by at least one of 6, 7, or 11 is

N0 = 900− (150 + 128 + 81) + (21 + 14 + 11)− 2

= 585

It follows that there are 315 integers that are divisible by at least one of these numbers.
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3. (10 points) Let π = (π1 π2 · · · πn) ∈ Sn, here n > 1. Recall that the pair (πj, πk), 1 ≤ j < k ≤ n is
called an inversion pair if πj > πk. Recall that a permutation is called even (odd) if it has an even
(odd) number of inversions.

Now let τ = (2 1 3 · · · n) ∈ Sn. To be clear, τ(1) = 2, τ(2) = 1, and τ(k) = k for 3 ≤ k ≤ n. (τ is
called a transposition.) Show that πτ ∈ Sn has a different parity than π ∈ Sn. That is, if π is even
then πτ is odd and vice-versa.

Solution:

Let π and τ be as described above and let δ = πτ . We claim that δ = (π2 π1 π3 · · · πn).
Now if the claim is true, then either E(δ) = E(π) \ {(π1, π2)} or E(δ) = E(π)∪ {(π2, π1)}.
In other words, |E(δ)| = |E(π)| ± 1, as desired.

To prove the claim, notice that δ(1) = π(τ(1)) = π(2) = π2, δ(2) = π(τ(2)) = π(1) = π1,
and δ(j) = π(j) = πj for j ≥ 3.

4. (10 points) Let sn count the number of ways to break an n-semester day into two parts with one
holiday during the first part and two (indistinguishable) holidays during the second part. In class
we used generating functions to show that

(2) sn =
∑

k

(

k

1

)(

n− k

2

)

=

(

n+ 1

4

)

Use a combinatorial proof to show that sn =
(

n+1
4

)

. Look to the board for a possible hint.

Solution:

This is exercise 8.13 from our textbook. See the solution on page 200.

Here’s another proof based on the hint that I wrote on the board. The right-hand side
of (2) counts the number of ways to choose a 4-subset from [n+ 1]. Given such a subset,
say 1 ≤ a < b < c < d ≤ n+ 1, we observe that a ≤ b− 1 < c− 1 < d− 1 ≤ n and assign
the semester break to day b− 1 and the three holidays to days a, c− 1, and d− 1. Notice
that this procedure is reversible even if the first holiday falls on the last day of the first
“half” of the semester, in which case a = b− 1. However, this presents no difficulties.
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5. (20 points) Let p ∈ P and let
[[n]
k

]

p
be the set of all π ∈ Sn such that each of the k cycles contains at

least p elements. For example, (137)(26458) ∈
[

[8]
2

]

3
since both cycles have at least 3 elements. On

the other hand, (15)(2436) /∈
[

[6]
2

]

3
since the first cycle has only 2 elements.

(a) Now set
[0
0

]

p
= 1 and for n > 0, let

[

n
k

]

p
=

∣

∣

∣

[[n]
k

]

p

∣

∣

∣
. Prove that

(3)

[

n+ 1

k

]

p

= n

[

n

k

]

p

+

(

n

p− 1

)

(p− 1)!

[

n− p+ 1

k − 1

]

p

, n ≥ p

Solution:

We used the distinguished element argument. The left-hand side counts the number of
permutations on [n+ 1] with exactly k cycles such that no cycle has fewer than p
elements.

Now n+ 1 either appears in a cycle that contains more than p elements or it appears in a
cycle with exactly p elements. In the first case, we can choose a permutation from

[[n]
k

]

and then we may place n+ 1 into any of the cycles, after each element. Now by the
product rule there are

[

n
k

]

· n ways to do this.

Otherwise, n+ 1 is in a cycle with exactly p− 1 elements. So there are
(

n
p−1

)

ways to
choose that elements that are in the same cycle is n+ 1, (p− 1)! ways to arrange those
elements within the cycle, followed by

[

n+1−p
k−1

]

p
ways to arrange the remaining k − 1

cycles. So by the product rule, there are
(

n
p−1

)

(p− 1)!
[

n−p+1
k

]

ways to create a
permutation in this case.

Since the two cases are clearly disjoint, the result follows by the sum rule.

(b) Let D([n])2 denote the set of all permutations such that each cycle has at least 2 elements.
Now let d0 = 1 and for n > 0, let dn = |D([n])2|. Find the next 5 terms in this sequence. That
is, find d1, d2, d3, d4, d5.

Solution:

Including d0, these are just the first 6 derangement numbers, which are the sums across
the first 6 rows of Table 3. That is, 1, 0, 1, 2, 9, 44.
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6. (20 points) Let {fn}n be the Fibonacci numbers. For n ≥ m, give a combinatorial proof of the
identity below.

(4) fn+m =

m
∑

k=0

(

m

k

)

fn−k

Solution:

The left-hand side counts the number of ways to cover Bn+m. For the right-hand side, we
condition on the number of dominos within the first m tiles. So label the first m tiles
from 1 through m. If they are all squares, they cover a Bm board in only one way and
there are fn ways to cover the rest of the board. So by the product rule, there are
1 · fn =

(

m
0

)

fn ways to cover the board in this case. Now suppose there is one domino
within the first m tiles. Then these tiles cover Bm+1 and there are

(

m
1

)

ways to do this.
Since there are fn−1 ways to cover the squares that remain, the product rule implies that
there are

(

m
1

)

fn−1 ways to cover Bn+m in this case.

In general, there are
(

m
k

)

ways to arrange k dominos within the first m tiles (covering
Bm+k) and fn−k ways to cover the remaining squares. Once again we apply the product
rule. Now since the first m tiles may contain zero dominos, or one domino, or two
dominos, etc. and since these cases are disjoint, the result now follows by the sum rule.
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