1. (20 points) Consider the sequence $\left\{a_{n}\right\}_{n \geq 0}$ defined by the recursion below and answer the questions that follow.

$$
\begin{equation*}
a_{n+3}=2 a_{n+2}-a_{n}, \quad a_{0}=1, a_{1}=3, a_{2}=4 \tag{1}
\end{equation*}
$$

(a) Find the next 3 terms in this sequence.

Solution:

The first 12 terms are $1,3,4,7,11,18,29,47,76,123,199,322$.
(b) Find the closed form of the generating function $A(x)=\sum_{n} a_{n} x^{n}$.

Solution:

According to the Wilf Rules, (1) is equivalent to the equation

$$
\frac{A(x)-1-3 x-4 x^{2}}{x^{3}}=2 \frac{A(x)-1-3 x}{x^{2}}+A(x)
$$

Rearranging yields

$$
A(x)\left(1-2 x+x^{3}\right)=1+x-2 x^{2}
$$

Thus

$$
A(x)=\frac{1+x-2 x^{2}}{1-2 x+x^{3}}
$$

2. (20 points) How many 3-digit positive integers are divisible by at least one of the numbers in the set $\{6,7,11\}$? For example, there are $\left\lfloor\frac{999}{6}\right\rfloor-\left\lfloor\frac{100}{6}\right\rfloor=166-16=1503$-digit numbers that are divisible by 6. Express your answer as a positive integer.

Solution:

Throughout this solution an integer is a 3 -digit positive integer. Let p_{6} be the property that an integer is divisible by 6 . Then the number of integers that are divisible by 6 is $N\left(p_{6}\right)=150$. Similarly,

$$
\begin{aligned}
& N\left(p_{7}\right)=\left\lfloor\frac{999}{7}\right\rfloor-\left\lfloor\frac{100}{7}\right\rfloor=128 \\
& N\left(p_{11}\right)=\left\lfloor\frac{999}{11}\right\rfloor-\left\lfloor\frac{100}{11}\right\rfloor=81
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
N\left(p_{6} p_{7}\right) & =21 \\
N\left(p_{6} p_{11}\right. & =14 \\
N\left(p_{7} p_{11}\right) & =11
\end{aligned}
$$

Finally,

$$
N\left(p_{6} p_{7} p_{11}\right)=2
$$

Now there are 900 3-digit integers, so by PIE, the number of integers that are not divisible by at least one of 6,7 , or 11 is

$$
\begin{aligned}
N_{0} & =900-(150+128+81)+(21+14+11)-2 \\
& =585
\end{aligned}
$$

It follows that there are 315 integers that are divisible by at least one of these numbers.
3. (10 points) Let $\pi=\left(\pi_{1} \pi_{2} \cdots \pi_{n}\right) \in S_{n}$, here $n>1$. Recall that the pair $\left(\pi_{j}, \pi_{k}\right), 1 \leq j<k \leq n$ is called an inversion pair if $\pi_{j}>\pi_{k}$. Recall that a permutation is called even (odd) if it has an even (odd) number of inversions.

Now let $\tau=(213 \cdots n) \in S_{n}$. To be clear, $\tau(1)=2, \tau(2)=1$, and $\tau(k)=k$ for $3 \leq k \leq n$. (τ is called a transposition.) Show that $\pi \tau \in S_{n}$ has a different parity than $\pi \in S_{n}$. That is, if π is even then $\pi \tau$ is odd and vice-versa.

Solution:

Let π and τ be as described above and let $\delta=\pi \tau$. We claim that $\delta=\left(\pi_{2} \pi_{1} \pi_{3} \cdots \pi_{n}\right)$. Now if the claim is true, then either $E(\delta)=E(\pi) \backslash\left\{\left(\pi_{1}, \pi_{2}\right)\right\}$ or $E(\delta)=E(\pi) \cup\left\{\left(\pi_{2}, \pi_{1}\right)\right\}$. In other words, $|E(\delta)|=|E(\pi)| \pm 1$, as desired.

To prove the claim, notice that $\delta(1)=\pi(\tau(1))=\pi(2)=\pi_{2}, \delta(2)=\pi(\tau(2))=\pi(1)=\pi_{1}$, and $\delta(j)=\pi(j)=\pi_{j}$ for $j \geq 3$.
4. (10 points) Let s_{n} count the number of ways to break an n-semester day into two parts with one holiday during the first part and two (indistinguishable) holidays during the second part. In class we used generating functions to show that

$$
\begin{equation*}
s_{n}=\sum_{k}\binom{k}{1}\binom{n-k}{2}=\binom{n+1}{4} \tag{2}
\end{equation*}
$$

Use a combinatorial proof to show that $s_{n}=\binom{n+1}{4}$. Look to the board for a possible hint.

Solution:

This is exercise 8.13 from our textbook. See the solution on page 200 .
Here's another proof based on the hint that I wrote on the board. The right-hand side of (2) counts the number of ways to choose a 4 -subset from $[n+1]$. Given such a subset, say $1 \leq a<b<c<d \leq n+1$, we observe that $a \leq b-1<c-1<d-1 \leq n$ and assign the semester break to day $b-1$ and the three holidays to days $a, c-1$, and $d-1$. Notice that this procedure is reversible even if the first holiday falls on the last day of the first "half" of the semester, in which case $a=b-1$. However, this presents no difficulties.
5. (20 points) Let $p \in \mathbb{P}$ and let $\left[\begin{array}{c}{[n]} \\ k\end{array}\right]_{p}$ be the set of all $\pi \in S_{n}$ such that each of the k cycles contains at least p elements. For example, $(137)(26458) \in\left[\begin{array}{c}{[8]} \\ 2\end{array}\right]_{3}$ since both cycles have at least 3 elements. On the other hand, $(15)(2436) \notin\left[\begin{array}{c}{[6]} \\ 2\end{array}\right]_{3}$ since the first cycle has only 2 elements.
(a) Now set $\left[\begin{array}{l}0 \\ 0\end{array}\right]_{p}=1$ and for $n>0$, let $\left[\begin{array}{c}n \\ k\end{array}\right]_{p}=\left|\left[\begin{array}{c}{[n]} \\ k\end{array}\right]_{p}\right|$. Prove that

$$
\left[\begin{array}{c}
n+1 \tag{3}\\
k
\end{array}\right]_{p}=n\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p}+\binom{n}{p-1}(p-1)!\left[\begin{array}{c}
n-p+1 \\
k-1
\end{array}\right]_{p}, \quad n \geq p
$$

Solution:

We used the distinguished element argument. The left-hand side counts the number of permutations on $[n+1]$ with exactly k cycles such that no cycle has fewer than p elements.

Now $n+1$ either appears in a cycle that contains more than p elements or it appears in a cycle with exactly p elements. In the first case, we can choose a permutation from $\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$ and then we may place $n+1$ into any of the cycles, after each element. Now by the product rule there are $\left[\begin{array}{l}n \\ k\end{array}\right] \cdot n$ ways to do this.
Otherwise, $n+1$ is in a cycle with exactly $p-1$ elements. So there are $\binom{n}{p-1}$ ways to choose that elements that are in the same cycle is $n+1,(p-1)$! ways to arrange those elements within the cycle, followed by $\left[\begin{array}{c}n+1-p \\ k-1\end{array}\right]_{p}$ ways to arrange the remaining $k-1$ cycles. So by the product rule, there are $\binom{n}{p-1}(p-1)!\left[\begin{array}{c}n-p+1 \\ k\end{array}\right]$ ways to create a permutation in this case.
Since the two cases are clearly disjoint, the result follows by the sum rule.
(b) Let $D([n])_{2}$ denote the set of all permutations such that each cycle has at least 2 elements. Now let $d_{0}=1$ and for $n>0$, let $d_{n}=\left|D([n])_{2}\right|$. Find the next 5 terms in this sequence. That is, find $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$.

Solution:

Including d_{0}, these are just the first 6 derangement numbers, which are the sums across the first 6 rows of Table 3. That is, $1,0,1,2,9,44$.
6. (20 points) Let $\left\{f_{n}\right\}_{n}$ be the Fibonacci numbers. For $n \geq m$, give a combinatorial proof of the identity below.

$$
\begin{equation*}
f_{n+m}=\sum_{k=0}^{m}\binom{m}{k} f_{n-k} \tag{4}
\end{equation*}
$$

Solution:

The left-hand side counts the number of ways to cover B_{n+m}. For the right-hand side, we condition on the number of dominos within the first m tiles. So label the first m tiles from 1 through m. If they are all squares, they cover a B_{m} board in only one way and there are f_{n} ways to cover the rest of the board. So by the product rule, there are $1 \cdot f_{n}=\binom{m}{0} f_{n}$ ways to cover the board in this case. Now suppose there is one domino within the first m tiles. Then these tiles cover B_{m+1} and there are $\binom{m}{1}$ ways to do this. Since there are f_{n-1} ways to cover the squares that remain, the product rule implies that there are $\binom{m}{1} f_{n-1}$ ways to cover B_{n+m} in this case.
In general, there are $\binom{m}{k}$ ways to arrange k dominos within the first m tiles (covering B_{m+k}) and f_{n-k} ways to cover the remaining squares. Once again we apply the product rule. Now since the first m tiles may contain zero dominos, or one domino, or two dominos, etc. and since these cases are disjoint, the result now follows by the sum rule.

