Date	Section	Exercises** (QC - Quick Check and CE - Class Exercises)
$08 / 28$	1.1	CE $-1,4,17,19,38,40$
$08 / 30$	1.2	CE $-16,18,22,23,26$
$09 / 01$	3.1	CE $-4,17,32,37($ a $), 39$, prove Theorem 3.5
$09 / 06$	3.2	CE $-8,12,18,27,52$
$09 / 08^{*}$	3.3	CE $-10,25,34,41,44$, prove Theorem 3.21
$09 / 11^{*}$	4.1	CE $-4,10,41,46$
$09 / 13^{*}$	4.1	CE $-3,31$
$09 / 15$	4.1	CE $-21,23,39,40$
$09 / 18^{*}$	4.2	QC $-1,2 ;$ CE -18 (give algebraic and combinatorial proofs), 19, 34
$09 / 20^{*}$	4.3	QC $-1,3 ;$ CE -27
$09 / 22^{*}$	5.1	QC $-1,2 ;$ CE $-18,24$
$09 / 25$	5.1	QC $-3 ;$ CE $-21,25$
$09 / 25^{*}$	5.2	QC $-1,2 ;$ CE $-2,19$, Find formulas for $\left\{\begin{array}{l}n \\ 1\end{array}\right\},\left\{\begin{array}{c}n \\ n-1\end{array}\right\},\left\{\begin{array}{l}n \\ n\end{array}\right\}$
$09 / 27^{*}$	5.2	QC $-3 ;$ CE $-16,28,33$
$09 / 29$	$\underline{\text { Bin. Inv. }}$	$\underline{\text { Handout }-1,2,3}$
$09 / 29$	$\underline{\text { Bin. Inv. }}$	$\underline{\text { Handout }-4,5}$

09/08 How many lottery tickets are possible in each of the modified versions of MI47 described below?
a. Each ticket has 6 numbers between 1 and 47, but now a ticket can match any number at most twice. For example, $\{1,3,3,6,42,42\},\{2,5,10,17,31,46\}$, and $\{4,4,19,19,36,36\}$ are valid tickets, but $\{6,6,12,12,12,35\}$ is not.
b. Once again, each ticket has 6 numbers between 1 and 47 , but this time a ticket can match any number as often as possible. For example, in addition to the examples in part (a), $\{4,5,21,21,21,21\}$ and $\{7,7,7,7,7,7\}$ are also a valid tickets.

09/11 Find two proofs of the identity below.

$$
\frac{1}{1-x}=\sum_{n \geq 0} x^{n}
$$

$09 / 13$ For $n \geq m$, show that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\left(\binom{k}{m}\right)(-1)^{k}=(-1)^{n} \delta_{n m} \tag{1}
\end{equation*}
$$

Hint: Let \mathcal{E} be the set of ways to choose an even number of candidates from $[n]$ and then allow m votes to be distributed among these candidates. In a similar manner, let \mathcal{O} be the set of ways to choose an odd number of candidates. Now find a bijection between \mathcal{E} and \mathcal{O}.

[^0]09/18 Verify the following identities.

$$
\begin{align*}
\binom{\alpha}{n} & =(-1)^{n}\binom{n-\alpha-1}{n} \tag{2}\\
\sum_{n}\binom{n}{k} x^{n} & =\frac{x^{k}}{(1-x)^{k+1}} \tag{3}
\end{align*}
$$

Hint: To prove (3), combine (2) with the General Binomial Theorem.
$09 / 20$ Let $n, k \in \mathbb{P}$. Find a combinatorial proof of the identity below.

$$
\left(\binom{k}{n-k}\right)=\binom{n-1}{k-1}
$$

$09 / 22$ Let $n, k \in \mathbb{N}$ with $(n, k) \neq(0,0)$. Find a combinatorial proof of the identity below.

$$
\left(\binom{n}{k}\right)=\left(\binom{n}{k-1}\right)+\left(\binom{n-1}{k}\right)
$$

Do not use the identity $\left(\binom{k}{n}\right)=\binom{k+n-1}{k-1}$.
09/25 Write the given set partition in block form or canonical form, as appropriate.
(a) If $\sigma=14 / 238 / 5 / 67$ then $w(\sigma)=$
(b) $w(\delta)=1123124451$ then $\delta=$

09/27 Prove each of the following identities.
(a)

$$
x^{n}=\sum_{k=0}^{n} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\binom{x}{k}
$$

(b)

$$
\sum_{k=0}^{n}(-1)^{k} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=(-1)^{n}
$$

(c)

$$
\sum_{k=0}^{n}(-1)^{k} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\binom{x+k-1}{k}=(-x)^{n}
$$

09/29 (a) Find and verify a recursion formula for $k!\left\{\begin{array}{l}n \\ k\end{array}\right\}$.
(b) Find and verify a formula for $\left\{\begin{array}{l}n \\ 2\end{array}\right\}$. Hint: Use the canonical formulation of set partitions.

[^1]
[^0]: ${ }^{* *}$ Exercises from the A Walk Through Combinatorics, $4^{t h}$ ed., Miklós Bóna, World Scientific

[^1]: ${ }^{* *}$ Exercises from the A Walk Through Combinatorics, $4^{\text {th }}$ ed., Miklós Bóna, World Scientific

