Date	Section	$\mathbf{Exercises^{**}} \; (\mathrm{QC} \; \text{-} \; \mathrm{Quick} \; \mathrm{Check} \; \mathrm{and} \; \mathrm{CE} \; \text{-} \; \mathrm{Class} \; \mathrm{Exercises})$
08/28	1.1	CE - 1, 4, 17, 19, 38, 40
08/30	1.2	CE - 16, 18, 22, 23, 26
09/01	3.1	CE - 4, 17, 32, 37(a), 39, prove Theorem 3.5
09/06	3.2	CE - 8, 12, 18, 27, 52
09/08*	3.3	CE - 10, 25, 34, 41, 44, prove Theorem 3.21
09/11*	4.1	CE - 4, 10, 41, 46
$09/13^{*}$	4.1	CE - 3, 31
09/15	4.1	CE - 21, 23, 39, 40
$09/18^{*}$	4.2	QC - 1, 2; CE - 18 (give algebraic and combinatorial proofs), 19, 34
09/20*	4.3	QC - 1, 3; CE - 27
$09/22^{*}$	5.1	QC - 1, 2; CE - 18, 24
09/25	5.1	QC - 3; CE - 21, 25
$09/25^{*}$	5.2	QC - 1, 2; CE - 2, 19, Find formulas for $\binom{n}{1}, \binom{n}{n-1}, \binom{n}{n}$
$09/27^{*}$	5.2	QC - 3; CE - 16, 28, 33
09/29	Bin. Inv.	<u>Handout</u> - 1,2,3
09/29	Bin. Inv.	Handout - 4,5

09/08 How many lottery tickets are possible in each of the modified versions of MI47 described below?

- a. Each ticket has 6 numbers between 1 and 47, but now a ticket can match any number at most twice. For example, $\{1, 3, 3, 6, 42, 42\}$, $\{2, 5, 10, 17, 31, 46\}$, and $\{4, 4, 19, 19, 36, 36\}$ are valid tickets, but $\{6, 6, 12, 12, 12, 35\}$ is not.
- b. Once again, each ticket has 6 numbers between 1 and 47, but this time a ticket can match any number as often as possible. For example, in addition to the examples in part (a), {4,5,21,21,21,21} and {7,7,7,7,7,7} are also a valid tickets.
- 09/11 Find two proofs of the identity below.

$$\frac{1}{1-x} = \sum_{n \ge 0} x^n$$

09/13 For $n \ge m$, show that

$$\sum_{k=0}^{n} \binom{n}{k} \left(\binom{k}{m} \right) (-1)^{k} = (-1)^{n} \delta_{nm}$$

$$\tag{1}$$

Hint: Let \mathcal{E} be the set of ways to choose an even number of candidates from [n] and then allow m votes to be distributed among these candidates. In a similar manner, let \mathcal{O} be the set of ways to choose an odd number of candidates. Now find a bijection between \mathcal{E} and \mathcal{O} .

^{**} Exercises from the A Walk Through Combinatorics, 4th ed., Miklós Bóna, World Scientific

09/18 Verify the following identities.

$$\binom{\alpha}{n} = (-1)^n \binom{n-\alpha-1}{n}$$
(2)

$$\sum_{n} \binom{n}{k} x^{n} = \frac{x^{k}}{(1-x)^{k+1}}$$
(3)

Hint: To prove (3), combine (2) with the General Binomial Theorem.

09/20 Let $n, k \in \mathbb{P}$. Find a combinatorial proof of the identity below.

$$\left(\binom{k}{n-k}\right) = \binom{n-1}{k-1}$$

09/22 Let $n, k \in \mathbb{N}$ with $(n, k) \neq (0, 0)$. Find a combinatorial proof of the identity below.

$$\binom{n}{k} = \binom{n}{k-1} + \binom{n-1}{k}$$

Do not use the identity $\binom{k}{n} = \binom{k+n-1}{k-1}$.

 $09/25\,$ Write the given set partition in block form or canonical form, as appropriate.

- (a) If $\sigma = 14/238/5/67$ then $w(\sigma) =$
- (b) $w(\delta) = 1123124451$ then $\delta =$

09/27 Prove each of the following identities.

$$x^{n} = \sum_{k=0}^{n} k! \begin{Bmatrix} n \\ k \end{Bmatrix} \begin{pmatrix} x \\ k \end{pmatrix}$$

(b)

$$\sum_{k=0}^{n} (-1)^{k} k! \binom{n}{k} = (-1)^{n}$$

(c)

$$\sum_{k=0}^{n} (-1)^{k} k! \binom{n}{k} \binom{x+k-1}{k} = (-x)^{n}$$

09/29 (a) Find and verify a recursion formula for $k! {n \atop k}$.

(b) Find and verify a formula for $\binom{n}{2}$. *Hint:* Use the canonical formulation of set partitions.

^{**} Exercises from the A Walk Through Combinatorics, 4th ed., Miklós Bóna, World Scientific