1. (10 points) A standard deck of 52 playing cards contains 4 suits $\{\boldsymbol{\phi}, \diamond, \diamond, \boldsymbol{\uparrow}\}$, with 13 cards in each suit. How many cards must be drawn (at random) to guarantee 3 cards from the same suit. Justify your claim.

Solution:

We must draw 9 cards. Let $r=2$ and notice that we have $k=4$ suits. If we draw only 8 cards, we could end up with two \&'s, two \diamond 's, two V^{\prime} 's, and two 中's. On the other hand, since $9>2 \cdot 4$, we must have chosen at least 3 cards in a one suit, by the Pigeonhole Principle.
2. (10 points) Eleven distinct positive integers less than 28 are randomly selected. Prove that at least two of these must always have a common divisor greater than 1.

Solution:

Notice that the we can certainly choose the following 6 integers since they are pairwise coprime: $1,11,13,17,19,23$.

Now distribute the remaining integers into four boxes as follows (other choices will also work). The even integers go into box $b_{1} ; 3,9,27 \in b_{2} ; 5,15,25 \in b_{3}$; and $7,21 \in b_{4}$. Notice that if $m, n \in b_{j}, j \in[4]$, then $\operatorname{gcd}(m, n)>1$.

Since we must choose the remaining 5 integers from these four boxes, at least two of the integers must come from the same box by the Pigeonhole Principle. The result follows.

