1. (8 points) Let a, b, c be distinct prime numbers and let $n=a b^{2} c^{3}$. Excluding $1=a^{0} b^{0} c^{0}$, how many positive integer divisors does n have? For example, $a b$ and b^{2} are two such divisors.

Solution:

It turns out that there are 23 divisors.
To see this note that any divisor of n must be of the form $a^{k_{a}} b^{k_{b}} c^{k_{c}}$, where $0 \leq k_{a} \leq 1$, $0 \leq k_{b} \leq 2$, and $0 \leq k_{c} \leq 3$ are integers. So there are 2 possible exponents for $a, 3$ possible exponents for b, and 4 possible exponents for c. So by the product rule, the number of possible divisors is $2 \times 3 \times 4$ and since $a^{0} b^{0} c^{0}$ must be excluded, the result follows.
2. (12 points) How many 5 or 6 -letter words can be created from the multiset $M=\left\{\left\{a, b^{2}, c^{3}\right\}\right\}$? For example, it is impossible to create a 5 -letter word from M using only one c.

Solution:

There are $\frac{6!}{1!2!3!}=60$ distinguishable permutations using all six letters.
We have to work a little harder for the 5 -letter words. There are $\frac{5!}{1!2!2!}=30$ distinguishable permutations using the letters $\left\{\left\{a, b^{2}, c^{2}\right\}\right\}$. There are $\frac{5!}{2!3!}=10$ distinguishable permutations using the letters $\left\{\left\{b^{2}, c^{3}\right\}\right\}$. Finally, there are $\frac{5!}{1!2!2!}=20$ distinguishable permutations using the letters $\left\{\left\{a, b, c^{3}\right\}\right\}$.

Since each of these four sets of words are pairwise disjoint, there are $60+30+10+20=120$ five or 6 -letter words that can be created from M.

