1. (6 points) What is the largest coefficient in the expansion of $(x+y+z+w)^{6}$? Express your answer as An INTEGER. A bit of trial and error is probably required.

Solution:

The coefficients have the form $\binom{6}{a, b, c, d}$ where $a+b+c+d=6$. After a bit of trial and error, it's easy to see that largest coefficient must be

$$
\binom{6}{2,2,1,1}=\frac{6!}{2!2!}=180
$$

2. (4 points) Find the sum below. Justify your Response.

$$
\sum_{n_{1}+n_{2}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}
$$

Solution:

By the Multinomial Theorem,

$$
\begin{aligned}
k^{n} & =\left(\sum_{j=1}^{k} 1\right)^{n} \\
& =\sum_{n_{1}+n_{2}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} 1^{n_{1}} 1^{n_{2}} \cdots 1^{n_{k}} \\
& =\sum_{n_{1}+n_{2}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}
\end{aligned}
$$

3. (10 points) Give a combinatorial proof of the identity below.

$$
4^{k}=\sum_{j=0}^{k} 3^{j}\binom{k}{j}
$$

Solution:

Question - How many k-words are there using the alphabet $\mathcal{A}=\{a, b, c, d\}$?
For the left-hand side, there are 4 choices for the first letter, 4 choices for the second, and so on. So by the product rule, there are $4 \times 4 \times \cdots \times 4=4^{k}$ such words.

For the right-hand side, we condition on the location of the letter a. So there are $\binom{k}{k-j}=\binom{k}{j}$ ways to position $k-j$ occurrences of the letter a and the remaining positions may be filled with letters from the alphabet $\{b, c, d\}$ in 3^{j} ways. So by the product rule, there are $\binom{k}{j} 3^{j}$ ways to create a k-word with exactly $k-j$ occurrences of a. Since these collections are disjoint and since a k-word contains zero a 's, or one a, or two a 's, etc., we may sum as j ranges from 0 to k. The result follows.

