Solution:

The coefficients have the form $\binom{6}{a,b,c,d}$ where a + b + c + d = 6. After a bit of trial and error, it's easy to see that largest coefficient must be

$$\binom{6}{2,2,1,1} = \frac{6!}{2!2!} = 180$$

2. (4 points) Find the sum below. JUSTIFY YOUR RESPONSE.

$$\sum_{n_1+n_2+\dots+n_k=n} \binom{n}{n_1,n_2,\dots,n_k}$$

Solution:

By the Multinomial Theorem,

$$k^{n} = \left(\sum_{j=1}^{k} 1\right)^{n}$$

= $\sum_{n_{1}+n_{2}+\dots+n_{k}=n} \binom{n}{n_{1}, n_{2}, \dots, n_{k}} 1^{n_{1}} 1^{n_{2}} \dots 1^{n_{k}}$
= $\sum_{n_{1}+n_{2}+\dots+n_{k}=n} \binom{n}{n_{1}, n_{2}, \dots, n_{k}}$

3. (10 points) Give a combinatorial proof of the identity below.

$$4^k = \sum_{j=0}^k 3^j \binom{k}{j}$$

Solution:

Question - How many k-words are there using the alphabet $\mathcal{A} = \{a, b, c, d\}$?

For the left-hand side, there are 4 choices for the first letter, 4 choices for the second, and so on. So by the product rule, there are $4 \times 4 \times \cdots \times 4 = 4^k$ such words.

For the right-hand side, we condition on the location of the letter a. So there are $\binom{k}{k-j} = \binom{k}{j}$ ways to position k - j occurrences of the letter a and the remaining positions may be filled with letters from the alphabet $\{b, c, d\}$ in 3^j ways. So by the product rule, there are $\binom{k}{j}3^j$ ways to create a k-word with exactly k - j occurrences of a. Since these collections are disjoint and since a k-word contains zero a's, or one a, or two a's, etc., we may sum as j ranges from 0 to k. The result follows.