- 1. (6 points) Let $\sigma \in S_7$ with inversion table $\sigma_I = 3002110$.
 - (a) Rewrite σ using one-line notation.

Solution:

 $\sigma = (2 \ 3 \ 7 \ 1 \ 5 \ 4 \ 6)$

(b) Rewrite σ using cycle notation.

Solution:

 $\sigma = (123764)(5)$

2. (7 points) Let $\pi = (\pi_1 \ \pi_2 \ \cdots \ \pi_n) \in S_n$ be a permutation and let $E(\pi)$ be the set of its inversions. Prove that $E(\pi)$ is transitive. That is, prove that if (a, b) and (b, c) are in $E(\pi)$, then $(a, c) \in E(\pi)$.

Solution:

This is rather straight-forward. If (a, b) and (b, c) are in $E(\pi)$, then a > b and b > c, hence a > c. Now if π is written in the usual one-line notation, a lies to the left of b and b lies to the left of c. In other words, a lies to the left of c and so $(a, c) \in E(\pi)$. 3. (7 points) A permutation is called even (resp. odd) if its inversion number is even (resp. odd). For example, the permutation σ in Problem 1 is odd since $i(\sigma) = |E(\sigma)| = 7$. Prove that if $\pi \in S_k$ has only one cycle, then π is even if and only if k is odd.

Solution:

In other words, if $\sigma \in {[n] \brack 1}$, then σ is even if n is odd, and σ is odd whenever n is even. Observe that this is obviously true when n = 1, since ${[1] \brack 1} = \{(1)\}$ and the identity permutation has zero inversions, in other words, it's an even permutation. Now when n = 2, we have ${[2] \brack 1} = \{(12)\}$. But $(12) = (2 \ 1)$ clearly has one inversion, so that (12) is odd.

We use cycle notation for the rest of this proof. Now every permutation in $\begin{bmatrix} n \\ 1 \end{bmatrix}$ is obtained by inserting *n* into any one of the n-1 positions of $\pi = (\pi_1 \pi_2 \pi_3 \cdots \pi_{n-1})$ for some $\pi \in \begin{bmatrix} n-1 \\ 1 \end{bmatrix}$. Now by Theorem 6 on the Inversion handout, $\operatorname{sgn}(\pi \cdot (n)) = \operatorname{sgn}(\pi) \operatorname{sgn}(\pi) \cdot 1 = \operatorname{sgn}(\pi)$. In other words, the one-cycle π and the two-cycle $\pi \cdot (n)$ have the same parity.

Now let $\pi^{(j)} = (\pi_1 \pi_2 \pi_3 \cdots \pi_j n \pi_{j+1} \cdots \pi_{n-1}) \in {[n] \choose 1}$. In other words, $\pi^{(j)}$ is the one-cycle in S_n obtained by inserting n into the one-cycle π (described above) in the indicated position. We claim that $\pi^{(j)} = \pi \cdot (n) \cdot (\pi_j n)$. Now if the claim is true, then

$$\operatorname{sgn}(\pi^{(j)}) = \operatorname{sgn}(\pi \cdot (n) \cdot (\pi_j n)) = \operatorname{sgn}(\pi) \operatorname{sgn}((\pi_j n))$$
$$= \operatorname{sgn}(\pi)(-1)$$

In other words, one-cycles in S_{n-1} and S_n have different parities. And since the parity of a one-cycle in S_1 is even, the result follows by induction.

To prove the claim, observe that $\pi^{(j)}[\pi_j] = n$ and $\pi^{(j)}[n] = \pi_{j+1}$. But

$$\pi \cdot (n) \cdot (\pi_i n) [\pi_i] = n$$

and

$$\pi \cdot (n) \cdot (\pi_j n)[n] = \pi \cdot (n)[\pi_j]$$
$$= (\pi_1 \pi_2 \pi_3 \cdots \pi_{n-1})[\pi_j]$$
$$= \pi_{j+1}$$

and the claim is proven.

Remark: Let $\pi = (1)(2)\cdots(j-1)(j+1)\cdots(k-1)(k+1)\cdots(n)(jk)$ for some $1 \le j < k \le n$. So π has n-2 fixed points and $\pi[j] = k$ and $\pi[k] = j$. Such permutations are called *transpositions* because they swap (transpose) the entries j and k and leave everything else alone. In such cases, we often omit the fixed points and simply write $\pi = (jk)$. It turns out that the parity of a transposition is always odd, a fact that we exploited above when we stated $\operatorname{sgn}((\pi_j n)) = -1$. To see this, we use two-line notation and construct E((jk)).

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & j & \cdots & k & \cdots & n-1 & n \\ 1 & 2 & \cdots & k & \cdots & j & \cdots & n-1 & n \end{pmatrix}$$

Then there are k - j inversion pairs whose left entry is k and k - (j + 1) inversion pairs whose right entry is j. It follows that |E((jk))| = 2k - 2j - 1 which is odd, as expected.

We illustrate all of this with an example. Let $\pi = (1365742) \in {[7] \choose 1}$. Then

$$\pi = (1365742) = (136542)(57)$$

so that

$$sgn(\pi) = sgn((136542)) sgn((57))$$

= $sgn((136542))(-1)$

In other words, π and $(136542) \in {[6] \choose 1}$ have different parities. Notice that $(136542)(57)[5] = 7 = \pi[5]$ and $(136542)(57)[7] = (136542)[5] = 4 = \pi[7]$ as expected.