1. (6 points) Let $\sigma \in S_{7}$ with inversion table $\sigma_{I}=3002110$.
(a) Rewrite σ using one-line notation.

Solution:

$$
\sigma=(2371546)
$$

(b) Rewrite σ using cycle notation.

Solution:

$$
\sigma=(123764)(5)
$$

2. (7 points) Let $\pi=\left(\pi_{1} \pi_{2} \cdots \pi_{n}\right) \in S_{n}$ be a permutation and let $E(\pi)$ be the set of its inversions. Prove that $E(\pi)$ is transitive. That is, prove that if (a, b) and (b, c) are in $E(\pi)$, then $(a, c) \in E(\pi)$.

Solution:

This is rather straight-forward. If (a, b) and (b, c) are in $E(\pi)$, then $a>b$ and $b>c$, hence $a>c$. Now if π is written in the usual one-line notation, a lies to the left of b and b lies to the left of c. In other words, a lies to the left of c and so $(a, c) \in E(\pi)$.
3. (7 points) A permutation is called even (resp. odd) if its inversion number is even (resp. odd). For example, the permutation σ in Problem 1 is odd since $i(\sigma)=|E(\sigma)|=7$. Prove that if $\pi \in S_{k}$ has only one cycle, then π is even if and only if k is odd.

Solution:

In other words, if $\sigma \in\left[\begin{array}{c}{[n]} \\ 1\end{array}\right]$, then σ is even if n is odd, and σ is odd whenever n is even. Observe that this is obviously true when $n=1$, since $\left[\begin{array}{c}{[1]} \\ 1\end{array}\right]=\{(1)\}$ and the identity permutation has zero inversions, in other words, it's an even permutation. Now when $n=2$, we have $\left[\begin{array}{c}{[2]} \\ 1\end{array}\right]=\{(12)\}$. But $(12)=\left(\begin{array}{ll}2 & 1\end{array}\right)$ clearly has one inversion, so that (12) is odd.
We use cycle notation for the rest of this proof. Now every permutation in $\left[\begin{array}{c}{[n]} \\ 1\end{array}\right]$ is obtained by inserting n into any one of the $n-1$ positions of $\pi=\left(\pi_{1} \pi_{2} \pi_{3} \cdots \pi_{n-1}\right)$ for some $\pi \in\left[\begin{array}{c}{[n-1]} \\ 1\end{array}\right]$. Now by Theorem 6 on the Inversion handout, $\operatorname{sgn}(\pi \cdot(n))=\operatorname{sgn}(\pi) \operatorname{sgn}((n))=\operatorname{sgn}(\pi) \cdot 1=\operatorname{sgn}(\pi)$. In other words, the one-cycle π and the two-cycle $\pi \cdot(n)$ have the same parity.
Now let $\pi^{(j)}=\left(\pi_{1} \pi_{2} \pi_{3} \cdots \pi_{j} n \pi_{j+1} \cdots \pi_{n-1}\right) \in\left[\begin{array}{c}{[n]} \\ 1\end{array}\right]$. In other words, $\pi^{(j)}$ is the one-cycle in S_{n} obtained by inserting n into the one-cycle π (described above) in the indicated position. We claim that $\pi^{(j)}=\pi \cdot(n) \cdot\left(\pi_{j} n\right)$. Now if the claim is true, then

$$
\begin{aligned}
\operatorname{sgn}\left(\pi^{(j)}\right) & =\operatorname{sgn}\left(\pi \cdot(n) \cdot\left(\pi_{j} n\right)\right)=\operatorname{sgn}(\pi) \operatorname{sgn}\left(\left(\pi_{j} n\right)\right) \\
& =\operatorname{sgn}(\pi)(-1)
\end{aligned}
$$

In other words, one-cycles in S_{n-1} and S_{n} have different parities. And since the parity of a one-cycle in S_{1} is even, the result follows by induction.
To prove the claim, observe that $\pi^{(j)}\left[\pi_{j}\right]=n$ and $\pi^{(j)}[n]=\pi_{j+1}$. But

$$
\pi \cdot(n) \cdot\left(\pi_{j} n\right)\left[\pi_{j}\right]=n
$$

and

$$
\begin{aligned}
\pi \cdot(n) \cdot\left(\pi_{j} n\right)[n] & =\pi \cdot(n)\left[\pi_{j}\right] \\
& =\left(\pi_{1} \pi_{2} \pi_{3} \cdots \pi_{n-1}\right)\left[\pi_{j}\right] \\
& =\pi_{j+1}
\end{aligned}
$$

and the claim is proven.

Remark: Let $\pi=(1)(2) \cdots(j-1)(j+1) \cdots(k-1)(k+1) \cdots(n)(j k)$ for some $1 \leq j<k \leq n$. So π has $n-2$ fixed points and $\pi[j]=k$ and $\pi[k]=j$. Such permutations are called transpositions because they swap (transpose) the entries j and k and leave everything else alone. In such cases, we often omit the fixed points and simply write $\pi=(j k)$. It turns out that the parity of a transposition is always odd, a fact that we exploited above when we stated $\operatorname{sgn}\left(\left(\pi_{j} n\right)\right)=-1$. To see this, we use two-line notation and construct $E((j k))$.

$$
\pi=\left(\begin{array}{lllllllll}
1 & 2 & \cdots & j & \cdots & k & \cdots & n-1 & n \\
1 & 2 & \cdots & k & \cdots & j & \cdots & n-1 & n
\end{array}\right)
$$

Then there are $k-j$ inversion pairs whose left entry is k and $k-(j+1)$ inversion pairs whose right entry is j. It follows that $|E((j k))|=2 k-2 j-1$ which is odd, as expected.

We illustrate all of this with an example. Let $\pi=(1365742) \in\left[\begin{array}{c}{[7]} \\ 1\end{array}\right]$. Then

$$
\begin{aligned}
\pi & =(1365742) \\
& =(136542)(57)
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{sgn}(\pi) & =\operatorname{sgn}((136542)) \operatorname{sgn}((57)) \\
& =\operatorname{sgn}((136542))(-1)
\end{aligned}
$$

In other words, π and (136542) $\in\left[\begin{array}{c}{[6]} \\ 1\end{array}\right]$ have different parities. Notice that $(136542)(57)[5]=7=\pi[5]$ and $(136542)(57)[7]=(136542)[5]=4=\pi[7]$ as expected.

