1. (12 points) Consider the recursion below and answer the questions that follow.

$$
\begin{equation*}
a_{n+2}=3 a_{n+1}-a_{n}, \quad a_{0}=1, a_{1}=4 \tag{1}
\end{equation*}
$$

(a) Carefully find the next 3 terms in this sequence.

Solution:

$a_{2}=3(4)-1=11$, etc., so the next 3 terms are $11,29,76$. Here are the first 11 terms.
(b) Find the closed form of the generating function for this sequence. That is, find the closed form of $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.

Solution:

We can multiply the recurrence in (1) by x^{n+2} and sum over n to produce

$$
\sum_{n \geq 0} a_{n+2} x^{n+2}=3 \sum_{n \geq 0} a_{n+1} x^{n+2}-\sum_{n \geq 0} a_{n} x^{n+2}
$$

This is equivalent to

$$
A(x)-a_{0}-a_{1} x=3 x\left(A(x)-a_{0}\right)-x^{2} A(x)
$$

Note: One can also use the Wilf rules to produce the same equation.

Now apply the initial conditions and rearrange to obtain

$$
A(x)\left(1-3 x+x^{2}\right)=1+4 x-3 x
$$

Thus

$$
A(x)=\frac{1+x}{1-3 x+x^{2}}
$$

Compare the coefficients in the Taylor Series expansion of $A(x)$ with the terms listed in part (a).
2. (8 points) Let $\left\{b_{n}\right\}_{n \geq 0}$ be the sequence defined by the recursion below.

$$
\begin{equation*}
b_{n+3}=3 b_{n+2}-b_{n+1}+4 b_{n}, \quad b_{0}=1, b_{1}=5, b_{2}=12 \tag{2}
\end{equation*}
$$

According to a theorem mentioned in class, the closed form of the ordinary generating function whose sequence of coefficients satisfies (2) must be of the form

$$
\begin{equation*}
B(x)=\sum_{n \geq 0} b_{n} x^{n}=\frac{q(x)}{1-3 x+x^{2}-4 x^{3}} \tag{3}
\end{equation*}
$$

where $q(x)$ is a nonzero polynomial of degree strictly less than 3 .
Find the closed form of $B(x)$. In other words, find $q(x)$.

Solution:

Although we could repeat the method we used in Problem 1 or use the Wilf rules, we'll follow the suggestion above. Notice that if $B(x)$ is as shown in (3), then $q(x)=a+b x+c x^{2}$. So we just need to find a, b, and c. It follows by Taylor's Theorem that

$$
\begin{aligned}
1 & =b_{0}=\frac{B(0)}{0!}=a \\
5 & =b_{1}=\frac{B^{\prime}(0)}{1!}=3+b \Longrightarrow b=2 \\
12 & =b_{2}=\frac{B^{\prime \prime}(0)}{2!}=14+c \Longrightarrow c=-2
\end{aligned}
$$

It follows that

$$
q(x)=1+2 x-2 x^{2}
$$

and

$$
B(x)=\frac{1+2 x-2 x^{2}}{1-3 x+x^{2}-4 x^{3}}
$$

Once again, we can use an external tool to compute the first few terms of the Taylor series expansion of $B(x)$ as a sanity check. Notice that

$$
\begin{aligned}
& b_{3}=3(12)-5+4(1)=35=\left[x^{3}\right] B(x) \\
& b_{4}=3(35)-12+4(5)=113=\left[x^{4}\right] B(x)
\end{aligned}
$$

as expected.

