1. (12 points) Let $G(x)=\sum_{n \geq 0} g_{n} x^{n}$ and suppose that

$$
\begin{equation*}
G(x)=\frac{1+x}{(1+2 x)(1-3 x)}=\frac{1+x}{1-x-6 x^{2}} \tag{1}
\end{equation*}
$$

(a) The sequence of coefficients $\left\{g_{n}\right\}$ satisfies a linear recursion equation of the form $g_{n+2}=A g_{n+1}+B g_{n}$. Find this equation and state the initial conditions.

Solution:

As we saw in class, the recursion should be

$$
g_{n+2}=g_{n+1}+6 g_{n}
$$

See the denominator of the right-hand side of (1). For the initial conditions, we have

$$
\begin{aligned}
& g_{0}=\frac{G(0)}{0!}=1 \\
& g_{1}=\frac{G^{\prime}(0)}{1!}=2
\end{aligned}
$$

(b) Find the closed formula for the sequence of coefficients, g_{n}.

Solution:

A routine partial fraction decomposition yields

$$
G(x)=\frac{1+x}{(1+2 x)(1-3 x)}=\frac{1 / 5}{1+2 x}+\frac{4 / 5}{1-3 x}
$$

It follows that

$$
G(x)=\frac{1}{5} \sum_{n \geq 0}(-2)^{n} x^{n}+\frac{4}{5} \sum_{n \geq 0} 3^{n} x^{n}
$$

Thus

$$
g_{n}=\left[x^{n}\right] G(x)=\frac{(-2)^{n}+4 \cdot 3^{n}}{5}
$$

Notice that with this formula, we can confirm that $g_{0}=1$ and $g_{1}=2$, as we stated in part (a).
2. (8 points) Consider the sequence below and answer the questions that follow.

$$
\begin{equation*}
\left\{h_{n}\right\}=\{4,1,5,6,11,17,28,45,73,118, \ldots\} \tag{2}
\end{equation*}
$$

(a) The first 10 terms in the sequence defined in (2) appear to satisfy a familiar linear recurrence equation. Find it.

Solution:

$$
h_{n+2}=h_{n+1}+h_{n}
$$

(b) Find the closed form of the generating function $H(x)=\sum_{n} h_{n} x^{n}$.

Solution:

We already know that the ogf will be of the form

$$
H(x)=\frac{4+b x}{1-x-x^{2}} \quad(\text { why } ?)
$$

But

$$
1=h_{1}=\frac{H^{\prime}(0)}{1!}=4+b \Longrightarrow b=-3
$$

Thus

$$
H(x)=\frac{4-3 x}{1-x-x^{2}}
$$

