## 1. INTRODUCTION

Physically, a dynamical system is an object or collection of objects in the real world which evolves in time.

Let us give some examples.

- (1) A fluid in a container subjected to stirring or external influences such as changes in temperature or pressure
- (2) The population at time t of a certain species of animal or plant
- (3) The current through a wire (motion of electrons)
- (4) The motion of a object suspended by a spring or rigid rod pendulum
- (5) Molecules of a gas in a container

Mathematically, we introduce the following type of dynamical systems.

1.1. Discrete Dynamical System. Let X be a set, and  $f: X \to X$ be a self-map. A dynmical system is the pair (X, f).

- (a) Topological dynmical system X is a topological space, and f is a continuous map or a homeomorphism. Usually X is taken to be a complete separable metric space.
- (b) Smooth dynmical system X is a region of Euclidean space or a manifold topological space, and f is a differentiable map or a diffeomorphism.
- (c) Complex dynmical system X is a complex plane  $\mathbb{C}$  or higher dimensional complex space  $\mathbb{C}^n$ , and f is analytic or meromorphic function.
- (d) *Ergodic theory* X is a measure space or probability space, and f is measure preserving transformation.

We write  $f^0 = id$ , the identity map, and  $f^2 = f \circ f$  where  $\circ$  denotes composition, and inductively for any n > 0,  $f^n = f^{n-1} \circ f$ . Here  $f^n$ is called the *n*th iterate of f. If f is invertible, then so are  $f^n$  for any n > 0. We denote by  $f^{-n}$  the inverse of  $f^n$ , that is,  $f^{-n} = (f^n)^{-1}$ . It is easy to check that for any  $m, n \in \mathbb{Z}$ ,  $f^{m+n} = f^m \circ f^n$ .

For any  $x_0 \in X$ , we write  $f^n(x_0) = x_n$ . If  $x_0$  is the state of our system at time 0, then  $x_n$  gives the state at time n.

For any  $x \in X$ , the set  $O(x) = \{f^n(x) : n \in \mathbb{Z}\}$  is called the *orbit* of x. If f is noninvetible, then we use  $O_+(x) = \{f^n(x) : n \in \mathbb{Z}_+\}$ , where  $\mathbb{Z}_+ := \mathbb{Z}_{\geq 0} = \{ n \in \mathbb{Z} : n \ge 0 \}.$ 

There are three type of orbits:

- periodic

An orbit  $O_+(x)$  is periodic if there is an integer n > 0 such 1 - 1

that  $f^n(x) = x$ . In this case, we also call the point x a *periodic* point. If n = 1, such a point x is called a fixed point.

- eventually periodic An orbit  $O_+(x)$  is called eventually periodic if there is a positive integer m such that  $O_+(f^m(x))$  is periodic. - countable sequence of points.

If f is invertible, then O(x) or  $O_+(x)$  cannot be eventually periodic except it is periodic.

**Example.** (1) Let  $x_0$  denote an initial amount of money (principle) deposited in a bank in which interest is paid at a rate of 5% per year. Let  $x_n$  denote the amount of money after n years. We have

$$x_1 = x_0 + .05x_0,$$
  
.....  
 $x_{n+1} = x_n + .05x_n$ 

, for  $n \ge 0$ . We may use f(x) = (1.05)x, so that  $f^n(x) = (1.05)^n x$  for each x.

- (2) Let  $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$  be the unit circle in the complex plane, and let  $R_{\alpha}(z) = e^{i\alpha}z$  where  $\alpha \in [0, 2\pi]$ . We call  $R_{\alpha}$  the rotation by angle  $\alpha$ . We will see later that
  - (a) if  $\frac{\alpha}{2\pi}$  is rational then all orbits are periodic, and
  - (b) if  $\frac{\alpha}{2\pi}$  is irrational, then all ortits are dense. (A subset  $A \subset X$  is dense if its closure is all of X).
- (3) Let I = [0, 1) and  $f(x) = 2x \pmod{1}$ . f is noninvertible.
  - (a) if  $x \in \mathbb{Q}$ , then  $O_+(x)$  is periodic or eventually periodic.
  - (b) if  $x \notin \mathbb{Q}$ , then  $O_+(x)$  is a countable set.

1.2. Continuous dynamical system. Let X be a set. A semi-flow on X is a map  $\phi : \mathbb{R}_+ \times X \to X$  such that

- (1)  $\phi(0, x) = x$  for all  $x \in X$ , and
- (2)  $\phi(s+t,x) = \phi(s,\phi(t,x))$  for all  $x \in X$ , and  $s,t \in \mathbb{R}_+$ .

If the map  $\phi$  is defined for all  $t \in \mathbb{R}$  and satisfies the preceding two properties, then it is called a *flow* in X.

The orbit of a point xfor semiflow and flow are the sets  $O_+(x) = \{\phi(t,x) : t \in \mathbb{R}\}$  and  $O(x) = \{\phi(t,x) : t \in \mathbb{R}\}$  respectively. We will mainly consider semi-flows which are actually flows. So we only describe the orbits of flows. There are three kinds.

1 - 2

## January 11, 2018

- fixed (or critical) orbit: An orbit O(x) is fixed or critical if  $\phi(t, x) = x$  for all t. As above we also call the point x a fixed or critical point of  $\phi$ .
- *periodic:* An orbit O(x) is called *periodic* if, there is a real  $\tau > 0$ such that  $\phi(t + \tau, x) = \phi(t, x)$  for all  $t \in \mathbb{R}$ , and  $\phi(s, x) \neq x$  for any  $0 < s < \tau$ . In this case, we call  $\tau$  the *period* of x.
- all other orbits, these are in 1-1 correspondence with the whole set of real numbers  $\mathbb{R}$ .
- **Example.** (4) Let X be a  $C^1$  vector field defined on all of  $\mathbb{R}^n$ , and let  $x \in \mathbb{R}^n$ . Let  $\phi(t, x)$  be (unique) solution of the initial value problem.

$$x' = X(x), \qquad x(0) = x.$$

By the Existence-Uniqueness Theorem for ordinary differential equations, such a solution exists on some open interval I containing 0. Assume that all such solutions can actually be defined for all real numbers t. Then, the function  $\phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a flow on  $\mathbb{R}^n$ .

(5) Let (X, f) be a discrete dynamical system. Take a function  $\tau : X \to \mathbb{R}$  such that  $\tau(x) > 0$  for any  $x \in X$ . Define  $Y = X \times \mathbb{R}/\sim$ , where  $(x, s + \tau(x)) \sim (f(x), s)$ . Then define a flow or semiflow given by

$$\phi^t((x,s)) = (x,t+s).$$

Hence,  $\phi^{\tau(x)}((x,0)) = (f(x),0)$ .  $\phi$  is called a suspension flow for f, while Y is called a suspension manifold of X.  $\tau$  is sometimes called a roof function.

1.3. **Group actions.** Recall that a group G is a pair  $(G.\cdot)$  consisting of a set G and a binary operation  $\cdot$  called the product (or sum in the commutative case) satisfying

- (i)  $(associativity) \cdot is associative: (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$  for all  $g_1, g_2, g_3 \in G;$
- (ii) (*identity*) there is an element  $e \in G$  such that  $e \cdot g = g \cdot e = g$  for all  $g \in G$ ;
- (iii) (*inverse*) for each  $g \in G$ , there there is an element  $h \in G$  such that  $g \cdot h = e = h \cdot g$ .

If  $\cdot$  only satisfies (i) and (ii), then G is called a *semigroup*.

Let  $(G, \cdot)$  be a semi-group and X be a set. An action of  $(G, \cdot)$  on X is a map  $\Phi : G \times X \to X$  such that

(i)  $\Phi(g \cdot h, x) = \Phi(g, \Phi(h, x))$  for all  $g, h \in G$  and  $x \in X$ .

(ii)  $\Phi(e, x) = x$  for all  $x \in X$ .

An orbit of a point  $x \in X$  of a group action (X, G) is given by  $O(x) = \{g(x) : g \in G\}$ . O(x) is *periodic* if O(x) is a finite set. So if G is a finite group, every orbit is periodic.

More formally, an action of  $(G, \cdot)$  is a map  $\sigma : G \to (X)$ , where (X) is the set of all selfmaps on X, such that

- (i)  $\sigma(g \cdot h) = \sigma(g) \circ \sigma(h)$  for all  $g, h \in G$ , and
- (ii)  $\sigma(e) = \operatorname{id}_X$ .

With the notation, for any  $x \in X$ ,  $O(x) = \{\sigma(g)(x) : g \in G\}$ .

A group action  $\sigma : G \to (X)$  is *faithful* if  $\sigma$  is an injective, that is, for  $g, h \in G, g \neq h$  implies  $\sigma(g) \neq \sigma(h)$ .

- **Example.** (6)  $G = \mathbb{Z}$  or  $\mathbb{Z}_+$  and  $\cdot$  is the usual addition of integers. If  $\sigma(1) = T$ , then  $\sigma(n) = T^n$  for  $n \in \mathbb{Z}$  or  $\mathbb{Z}_+$ . The group action gives a discrete dymanical system.
  - (7)  $G = \mathbb{R}$  or  $\mathbb{R}_+$  and  $\cdot$  is the usual addition of real numbers. If  $\sigma(t_0) = \phi(t_0, \cdot)$  for any  $t_0 \neq 0$ , then  $\sigma(s) = \phi(s, \cdot)T^n$  for any  $s = rt_0$ , where  $r \in \mathbb{Q}$ . If moreover both  $\phi(t, \cdot)$  and  $\sigma(t)$  are continuous on t, then  $\sigma(t) = \phi(t, \cdot)$  for any  $t \in \mathbb{R}$  or  $\mathbb{R}_+$ . The group action gives a continuous dymanical system.
  - (8)  $G = \mathbb{Z}^2$  or  $\mathbb{Z}^2_+$ . Then G is a Abelian group or semigroup. Suppose X = [0, 1) and G is generated by the actions  $f(x) = 2x \pmod{1}$ , and  $g(x) = 3x \pmod{1}$ . The action is sometimes called the  $(\times 2, \times 3)$  map, which is faithful.
  - (9) Let G be a discrete Heisenberg group, that is, the group

$$\mathcal{H} = \{ \langle a, b, c \rangle : ac = ca, bc = cb, ab = bac \}.$$

or, quivalently,

$$\mathcal{H} = \left\{ \begin{array}{cc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array} \right] : x, y, z \in \mathbb{Z} \right\}.$$

$$Let$$

$$a = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad c = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then ac = ca, bc = cb, ab = bac and for every  $k \in \mathcal{H}$ , there is a unique triple  $(n_1, n_2, n_3) \in \mathbb{Z}^3$  such that  $k = a^{n_1} b^{n_2} c^{n_3}$ .

Take  $X = \mathbb{R}^3$  or  $\mathbb{T}^3$ . It is clear that each of a, b, c induces a map on  $\mathbb{R}^3$  or  $\mathbb{T}^3$ . Then we get a discrete Heisenberg group action on X. Heisenberg group action is the simplest nonabelian group action.

1-4