2. Contracting maps and fixed point theorems

Let X be a metric space and let $T : X \to X$ be a mapping. Recall that a fixed point p of T is a point $p \in X$ such that T(p) = p.

A self-map T of a metric space X is called a *contraction* (or contraction map or mapping) if there is a constant $0 < \lambda < 1$ such that

$$d(Tx, Ty) \le \lambda d(x, y)$$

for all $x, y \in X$. Thus, $T : X \to X$ is a contraction if and only it is Lipschitz with Lipschitz constant less than 1.

Theorem 2.1 (Contraction Mapping Theorem). Suppose X is a complete metric space and $T: X \to X$ is a contraction map. Then T has a unique fixed point \bar{x} in X.

Moreover, if x is any point in \mathcal{F} , then the sequence of iterates x, Tx, T^2x, \ldots converges to \bar{x} exponentially fast.

Proof. (Uniqueness) If $0 < \lambda < 1$ is the contraction constant for T and Tx = x, Ty = y, then

$$d(x,y) = d(Tx,Ty) \le \lambda d(x,y)$$

which implies that d(x, y) = 0. This in turn implies that x = y.

(Existence) Take any $x \in X$ and let $x_0 = x$, $x_i = T^i x$ for i > 0. Then,

$$d(x_{n+1}, x_n) \le \lambda d(x_n, x_{n-1}) \le \ldots \le \lambda^n d(x_1, x_0) \quad \forall n \ge 1.$$

Thus, for m > n,

$$d(x_m, x_n) \leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_n)$$

$$\leq (\lambda^{m-1} + \lambda^{m-2} + \dots + \lambda^n) d(x_1, x_0)$$

(2.1)
$$\leq (\lambda^{m-1} + \lambda^{m-2} + \ldots + \lambda^n) d(x_1, x_0)$$
$$= \frac{\lambda^n (1 - \lambda^{m-n})}{1 - \lambda} d(x_1, x_0) \leq C \lambda^n d(x_1, x_0),$$

where $C = 1/(1 - \lambda)$.

This implies that the sequence $\{x_i\}_{i=1,2,...}$ is a Cauchy sequence. By completeness of X, it converges, say to an element \bar{x} of X. But, since T is continuous,

$$T(\bar{x}) = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_{n+1} = \bar{x},$$

so, $T(\bar{x}) = \bar{x}$. This proves the existence.

(Convergence rates) Since (2.1) holds for any $m \ge n$, let $m \to \infty$ we get

$$d(\bar{x}, x_n) \le C\lambda^n d(x_1, \bar{x}).$$

2-1

The fact $\lambda \in (0, 1)$ gives that the convergence is exponential.

So in a dynamical system (X, T), if X is a complete metric space and T is contracting map, then there is a unique fixed point \bar{x} , that is, $T(\bar{x}) = \bar{x}$. For any other point $x \in X$, we have that

$$\lim_{n \to \infty} T^n x = \bar{x}$$

exponentially fast.

The preceding theorem gives a useful sufficient condition for the existence of fixed points in a wide variety of situations. It is frequently useful to know when such fixed points depend continuously on parameters. This leads us to the next result.

Definition 2.2. Let Λ be a topological space (e.g. a metric space), and let X be a complete metric space. A map T from Λ into the space of maps $\mathcal{M}(X, X)$ is called a continuous family of self-maps of X if the map $\widehat{T}(\lambda, x) = T(\lambda)(x)$ is continuous as a map from the product space $\Lambda \times X$ to X.

The map T is called a uniform family of contractions on X if it is a continuous family of self-maps of X and there is a constant $0 < \alpha < 1$ such that

$$d(\widehat{T}(\lambda, x), \widehat{T}(\lambda, y)) \le \alpha d(x, y)$$

for all $x, y \in X, \lambda \in \Lambda$.

Thus, the continuous family is a uniform family of contractions if and only if all the maps in the family have the same upper bound $\alpha < 1$ for their Lipschitz constants.

Given the family \widehat{T} as above, we define the map $T_{\lambda}: X \to X$ by

$$T_{\lambda}(x) = T(\lambda)(x) = T(\lambda, x)$$

Theorem 2.3. If $T : \Lambda \to \mathcal{M}(X, X)$ is a uniform family of contractions on X, then each map T_{λ} has a unique fixed point x_{λ} which depends continuously on λ . That is, the map $\lambda \to \bar{x}_{\lambda}$ is a continuous map from Λ into X.

Proof. Let $g(\lambda)$ be the fixed point of the map T_{λ} which exists since the map T_{λ} is a contraction.

For $\lambda_1, \lambda_2 \in \Lambda$, we have

$$d(g(\lambda_1), g(\lambda_2)) = d(T_{\lambda_1}g(\lambda_1), T_{\lambda_2}g(\lambda_2))$$

$$\leq d(T_{\lambda_1}g(\lambda_1), T_{\lambda_1}g(\lambda_2)) + d(T_{\lambda_1}g(\lambda_2), T_{\lambda_2}g(\lambda_2))$$

$$\leq \alpha d(g(\lambda_1), g(\lambda_2)) + d(T_{\lambda_1}g(\lambda_2), T_{\lambda_2}g(\lambda_2)).$$

This implies that

$$d(g(\lambda_1), g(\lambda_2)) \le (1 - \alpha)^{-1} d(T_{\lambda_1} g(\lambda_2), T_{\lambda_2} g(\lambda_2)).$$

Since the map $\lambda \to T_{\lambda}g(\lambda_2)$ is continuous for fixed λ_2 , we see that $\lambda \to g(\lambda)$ is continuous.

Recall that a normed linear (vector) space is an ordered pair $(X, \|\cdot\|)$ where X is a vector space and $\|\cdot\|: X \to \mathbb{R}$ is a real-valued function on X such that

- (i) $||x|| \ge 0 \forall x \text{ and } ||x|| = 0 \text{ iff } x = 0 \text{ for } x \in X;$
- (ii) $\| \alpha x \| = \| \alpha \| \| x \|$ for $\alpha \in \mathbb{R}, x \in X$;
- (iii) $||x + y|| \le ||x|| + ||y|| \forall x, y \in X.$

A normed linear space $(X, \|\cdot\|)$ is called a *Banach space* if it is a complete metric space with respect to the metric $d(x, y) = \|x - y\|$ induced by the norm.

Let X be a metric space and Y be a Banach space. For a bounded function g from X to Y, the sup norm, or C^0 norm, of g is given by

$$||g|| = ||g||_0 = \sup_{x \in X} ||g(x)||.$$

Let X and and Y be Banach spaces. For a linear map, or a linear operator, f from X to Y, the norm of f is given by

$$||f|| = \sup_{|x| \le 1} ||f(x)||.$$

It is known that $f: X \to Y$ is bounded if $||f|| < \infty$.

Let M be a manifold, and $f: M \to M$ be differential. Then for any $x \in M$, the differential Df_x is a linear map from $T_x M$ to $T_{f(x)}M$. The C^1 norm of f is given by

$$||f||_1 = \sup_{x \in M} ||Df_x||.$$

However, if M is a normed space, the C^1 norm of f is also given by

 $||f||_1 = \sup\{||f||, ||Df_x|| : x \in M\}.$

Example 2.4. Let $X = \mathbb{R}^n$, and $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map with ||A|| < 1. Then the dynamical system (\mathbb{R}^n, A) is contracting with a unique fixed point 0.

Furthere, let $g : \mathbb{R}^n \to \mathbb{R}^n$ be an map with $||g||_0, ||g||_1 < \infty$. Then for $f_{\epsilon}(x) = Ax + \epsilon g(x)$, there exists $\epsilon_0 > 0$ such that for any $\epsilon \in [0, \epsilon_0]$, the system $(\mathbb{R}^n, f_{\epsilon})$ is contracting with a unique fixed point p_{ϵ} close to 0 by the above theorem.

Lemma 2.5. Let f be a continuously differentiable map on $X = \mathbb{R}^n$ such that $||Df_x|| \leq r < 1$ for all $x \in X$. Then for any $x, y \in X$, $|f(x) - f(y)| \leq r|x - y|$. *Proof.* Let u(t) = tx + (1 - t)y. Then f(u(0)) = x and f(u(1)) = y. Also,

$$\frac{d}{dt}f(u(t)) = \frac{\partial f}{\partial u}\frac{du}{dt} = Df_u(x-y).$$

By the Fundamental Theorem of Calculus, we have

$$|f(x) - f(y)| = \left| \int_0^1 \frac{d}{dt} f(u(t)) dt \right| = \left| \int_0^1 Df_u dt (x - y) \right|$$
$$\leq \left| \int_0^1 Df_u dt \right| |x - y| \leq r|x - y| \qquad \Box$$

Lemma 2.6. Let f be a continuously differentiable map on $X = \mathbb{R}^n$ with a fixed point \bar{x} such that all eigenvalues of $Df_{\bar{x}}$ have absolute value less than 1. Then there is a closed neighborhood U of \bar{x} such that $f(U) \subset U$ and f is a contraction on U with respect to an adapted norm.

Proof. It can be proved that the assumption on the eigenvalues implies that one can choose a norm that we denote by $\|\cdot\|'$ for which $\|Df\|' < 1$. Hence by continuity a small closed "ball" around \bar{x} with respect to the norm $\|\cdot\|'$ can be chosen as the set U. (This ball is in fact an ellipsoid in \mathbb{R}^n .)

Example 2.7. Let $X = \mathbb{C}$, and let $f(z) = z^2$ for $z \in \mathbb{C}$. Since f'(z) = 2z, for any r < 1, f is a contraction on $B(r) := \{z \in \mathbb{Z} : |z| \le r\}$.

For any analytic function $g : \mathbb{C} \to CC$, there exists $\epsilon_0 > 0$ such that for any $\epsilon \in [0, \epsilon_0]$, $f(z) = f_{\epsilon}(z) = z^2 + \epsilon g(z)$ is contracting on B(r).

Example 2.8 (The Newton Method). Consider a function f on the real line and suppose that we have a reasonable guess x_0 for a root. Unless the graph intersects the x-axis at x_0 , i.e., $f(x_0) = 0$, we need to improve our guess. To that end we take the tangent line and see at which point x_1 it intersects the x-axis by setting $f(x_0) + f'(x_0)(x_1 - x_0) = 0$. Thus the improved guess is

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

It is clear that \bar{x} is a root of the equation if and only if it is a fixed point of the map F(x) := x - (f(x)/f'(x)).

A fixed point \bar{x} of a differentiable map F is said to be *superattracting* if $F'(\bar{x}) = 0$.

Proposition 2.9. If $|f'(x)| > \delta$ and |f''(x)| < M on a neighborhood of the root x^* , then \bar{x} is a superattracting fixed point of F(x).

2-4

Proof. This is because $F'(x) = f(x)f''(x)/(f'(x))^2$ and $f(\bar{x}) = 0$. \Box

Denote $\epsilon_n = |x_n - \bar{x}|$. If x_n is sufficient close to \bar{x} , then it can be proved that

$$\epsilon_{n+1} \le M \epsilon_n^2$$
, where $M = \sup_{x \in I} \left| \frac{f''(x)}{f'(x)} \right|$,

and I is a small interval containing $(\bar{x} - \epsilon_n, \bar{x} + \epsilon_n)$.

Other Fixed Point Theorems.

Theorem 2.10 (Brouwer Fixed Point Theorem). Every continuous map T of the closed unit ball in \mathbb{R}^n to itself has a fixed point.

For n = 1, the result can be obtained from the intermediate velue theorem.

Theorem 2.11. Every continuous map T of a the compact interval I to itself has a fixed point.

Proof. Suppose I = [a, b], where $-\infty < a < b < \infty$. Since $f(I) \subset I$, we have $f(a) - a \ge 0$ and $f(b) - b \le 0$. Then we use the intermediate velue theorem for f - id.

Theorem 2.12 (Schauder Fixed Point Theorem). Every continuous self-map of a compact convex subset of a Banach space has a fixed point.