
2. Contracting maps and fixed point theorems

Let X be a metric space and let T : X → X be a mapping. Recall
that a fixed point p of T is a point p ∈ X such that T (p) = p.

A self-map T of a metric space X is called a contraction (or contrac-
tion map or mapping) if there is a constant 0 < λ < 1 such that

d(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ X. Thus, T : X → X is a contraction if and only it is
Lipschitz with Lipschitz constant less than 1.

Theorem 2.1 (Contraction Mapping Theorem). Suppose X is a com-
plete metric space and T : X → X is a contraction map. Then T has
a unique fixed point x̄ in X.

Moreover, if x is any point in F , then the sequence of iterates x, Tx,
T 2x, . . . converges to x̄ exponentially fast.

Proof. (Uniqueness) If 0 < λ < 1 is the contraction constant for T and
Tx = x, Ty = y, then

d(x, y) = d(Tx, Ty) ≤ λd(x, y)

which implies that d(x, y) = 0. This in turn implies that x = y.
(Existence) Take any x ∈ X and let x0 = x, xi = T ix for i > 0.

Then,

d(xn+1, xn) ≤ λd(xn, xn−1) ≤ . . . ≤ λnd(x1, x0) ∀n ≥ 1.

Thus, for m > n,

d(xm, xn) ≤d(xm, xm−1) + d(xm−1, xm−2) + . . .+ d(xn+1, xn)

≤(λm−1 + λm−2 + . . .+ λn)d(x1, x0)

=
λn(1− λm−n)

1− λ
d(x1, x0) ≤ Cλnd(x1, x0),

(2.1)

where C = 1/(1− λ).
This implies that the sequence {xi}i=1,2,... is a Cauchy sequence. By

completeness of X, it converges, say to an element x̄ of X. But, since
T is continuous,

T (x̄) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x̄,

so, T (x̄) = x̄. This proves the existence.
(Convergence rates) Since (2.1) holds for any m ≥ n, let m → ∞ we

get

d(x̄, xn) ≤ Cλnd(x1, x̄).

The fact λ ∈ (0, 1) gives that the convergence is exponential. �
2-1



2-2 January 13, 2018

So in a dynamical system (X,T ), if X is a complete metric space
and T is contracting map, then there is a unique fixed point x̄, that is,
T (x̄) = x̄. For any other point x ∈ X, we have that

lim
n→∞

T nx = x̄

exponentially fast.
The preceding theorem gives a useful sufficient condition for the ex-

istence of fixed points in a wide variety of situations. It is frequently
useful to know when such fixed points depend continuously on param-
eters. This leads us to the next result.

Definition 2.2. Let Λ be a topological space (e.g. a metric space), and
let X be a complete metric space. A map T from Λ into the space of
maps M(X,X) is called a continuous family of self-maps of X if the

map T̂ (λ, x) = T (λ)(x) is continuous as a map from the product space
Λ×X to X.

The map T is called a uniform family of contractions on X if it is a
continuous family of self-maps of X and there is a constant 0 < α < 1
such that

d(T̂ (λ, x), T̂ (λ, y)) ≤ αd(x, y)

for all x, y ∈ X,λ ∈ Λ.

Thus, the continuous family is a uniform family of contractions if and
only if all the maps in the family have the same upper bound α < 1
for their Lipschitz constants.

Given the family T̂ as above, we define the map Tλ : X → X by

Tλ(x) = T (λ)(x) = T̂ (λ, x)

Theorem 2.3. If T : Λ → M(X,X) is a uniform family of contrac-
tions on X, then each map Tλ has a unique fixed point xλ which depends
continuously on λ. That is, the map λ → x̄λ is a continuous map from
Λ into X.

Proof. Let g(λ) be the fixed point of the map Tλ which exists since the
map Tλ is a contraction.

For λ1, λ2 ∈ Λ, we have

d(g(λ1), g(λ2)) =d(Tλ1g(λ1), Tλ2g(λ2))

≤d(Tλ1g(λ1), Tλ1g(λ2)) + d(Tλ1g(λ2), Tλ2g(λ2))

≤αd(g(λ1), g(λ2)) + d(Tλ1g(λ2), Tλ2g(λ2)).

This implies that

d(g(λ1), g(λ2)) ≤ (1− α)−1d(Tλ1g(λ2), Tλ2g(λ2)).
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Since the map λ → Tλg(λ2) is continuous for fixed λ2, we see that
λ → g(λ) is continuous. �

Recall that a normed linear (vector) space is an ordered pair (X, ∥ · ∥)
where X is a vector space and ∥ · ∥ : X → R is a real-valued function
on X such that

(i) ∥ x ∥ ≥ 0 ∀x and ∥ x ∥ = 0 iff x = 0 for x ∈ X;
(ii) ∥ αx ∥ = ∥ α ∥∥ x ∥ for α ∈ R, x ∈ X;
(iii) ∥ x+ y ∥ ≤ ∥ x ∥+ ∥ y ∥ ∀ x, y ∈ X.

A normed linear space (X, ∥ · ∥) is called a Banach space if it is a
complete metric space with respect to the metric d(x, y) = ∥ x− y ∥
induced by the norm.

Let X be a metric space and Y be a Banach space. For a bounded
function g from X to Y , the sup norm, or C0 norm, of g is given by

∥g∥ = ∥g∥0 = sup
x∈X

∥ g(x) ∥.

Let X and and Y be Banach spaces. For a linear map, or a linear
operator, f from X to Y , the norm of f is given by

∥f∥ = sup
|x|≤1

∥ f(x) ∥.

It is known that f : X → Y is bounded if ∥f∥ < ∞.
Let M be a manifold, and f : M → M be differential. Then for any

x ∈ M , the differential Dfx is a linear map from TxM to Tf(x)M . The
C1 norm of f is given by

∥f∥1 = sup
x∈M

∥Dfx∥.

However, if M is a normed space, the C1 norm of f is also given by

∥f∥1 = sup{∥f∥, ∥Dfx∥ : x ∈ M}.

Example 2.4. Let X = Rn, and A : Rn → Rn be a linear map with
∥A∥ < 1. Then the dynamical system (Rn, A) is contracting with a
unique fixed point 0.

Furthere, let g : Rn → Rn be an map with ∥g∥0, ∥g∥1 < ∞. Then for
fϵ(x) = Ax+ ϵg(x), there exists ϵ0 > 0 such that for any ϵ ∈ [0, ϵ0], the
system (Rn, fϵ) is contracting with a unique fixed point pϵ close to 0 by
the above theorem.

Lemma 2.5. Let f be a continuously differentiable map on X = Rn

such that ∥Dfx∥ ≤ r < 1 for all x ∈ X. Then for any x, y ∈ X,
|f(x)− f(y)| ≤ r|x− y|.
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Proof. Let u(t) = tx + (1 − t)y. Then f(u(0)) = x and f(u(1)) = y.
Also,

d

dt
f(u(t)) =

∂f

∂u

du

dt
= Dfu(x− y).

By the Fundamental Theorem of Calculus, we have

|f(x)− f(y)| =
∣∣∣ ∫ 1

0

d

dt
f(u(t))dt

∣∣∣ = ∣∣∣ ∫ 1

0

Dfudt(x− y)
∣∣∣

≤
∣∣∣ ∫ 1

0

Dfudt
∣∣∣|x− y| ≤ r|x− y| �

Lemma 2.6. Let f be a continuously differentiable map on X = Rn

with a fixed point x̄ such that all eigenvalues of Dfx̄ have absolute
value less than 1. Then there is a closed neighborhood U of x̄ such
that f(U) ⊂ U and f is a contraction on U with respect to an adapted
norm.

Proof. It can be proved that the assumption on the eigenvalues implies
that one can choose a norm that we denote by ∥·∥′ for which ∥Df∥′ < 1.
Hence by continuity a small closed “ball” around x̄ with respect to the
norm ∥ · ∥′ can be chosen as the set U . (This ball is in fact an ellipsoid
in Rn.) �
Example 2.7. Let X = C, and let f(z) = z2 for z ∈ C. Since f ′(z) =
2z, for any r < 1, f is a contraction on B(r) := {z ∈ Z : |z| ≤ r}.

For any analytic function g : C → CC, there existsxists ϵ0 > 0 such
that for any ϵ ∈ [0, ϵ0], f(z) = fϵ(z) = z2 + ϵg(z) is contracting on
B(r).

Example 2.8 (The Newton Method). Consider a function f on the
real line and suppose that we have a reasonable guess x0 for a root.
Unless the graph intersects the x-axis at x0, i.e., f(x0) = 0, we need
to improve our guess. To that end we take the tangent line and see at
which point x1 it intersects the x-axis by setting f(x0) + f ′(x0)(x1 −
x0) = 0. Thus the improved guess is

x1 = x0 −
f(x0)

f ′(x0)
.

It is clear that x̄ is a root of the equation if and only if it is a fixed
point of the map F (x) := x− (f(x)/f ′(x)).

A fixed point x̄ of a differentiable map F is said to be superattracting
if F ′(x̄) = 0.

Proposition 2.9. If |f ′(x)| > δ and |f ′′(x)| < M on a neighborhood
of the root x∗, then x̄ is a superattracting fixed point of F (x).
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Proof. This is because F ′(x) = f(x)f ′′(x)/(f ′(x))2 and f(x̄) = 0. �
Denote ϵn = |xn − x̄|. If xn is sufficient close to x̄, then it can be

proved that

ϵn+1 ≤ Mϵ2n, where M = sup
x∈I

∣∣∣f ′′(x)

f ′(x)

∣∣∣,
and I is a small interval containing (x̄− ϵn, x̄+ ϵn).

Other Fixed Point Theorems.

Theorem 2.10 (Brouwer Fixed Point Theorem). Every continuous
map T of the closed unit ball in Rn to itself has a fixed point.

For n = 1, the result can be obtained from the intermediate velue
theorem.

Theorem 2.11. Every continuous map T of a the compact interval I
to itself has a fixed point.

Proof. Suppose I = [a, b], where −∞ < a < b < ∞. Since f(I) ⊂ I,
we have f(a)− a ≥ 0 and f(b)− b ≤ 0. Then we use the intermediate
velue theorem for f − id. �
Theorem 2.12 (Schauder Fixed Point Theorem). Every continuous
self-map of a compact convex subset of a Banach space has a fixed
point.


