2. Contracting maps and fixed point theorems

Let X be a metric space and let $T: X \rightarrow X$ be a mapping. Recall that a fixed point p of T is a point $p \in X$ such that $T(p)=p$.

A self-map T of a metric space X is called a contraction (or contraction map or mapping) if there is a constant $0<\lambda<1$ such that

$$
d(T x, T y) \leq \lambda d(x, y)
$$

for all $x, y \in X$. Thus, $T: X \rightarrow X$ is a contraction if and only it is Lipschitz with Lipschitz constant less than 1.

Theorem 2.1 (Contraction Mapping Theorem). Suppose X is a complete metric space and $T: X \rightarrow X$ is a contraction map. Then T has a unique fixed point \bar{x} in X.

Moreover, if x is any point in \mathcal{F}, then the sequence of iterates $x, T x$, $T^{2} x, \ldots$ converges to \bar{x} exponentially fast.

Proof. (Uniqueness) If $0<\lambda<1$ is the contraction constant for T and $T x=x, T y=y$, then

$$
d(x, y)=d(T x, T y) \leq \lambda d(x, y)
$$

which implies that $d(x, y)=0$. This in turn implies that $x=y$.
(Existence) Take any $x \in X$ and let $x_{0}=x, x_{i}=T^{i} x$ for $i>0$. Then,

$$
d\left(x_{n+1}, x_{n}\right) \leq \lambda d\left(x_{n}, x_{n-1}\right) \leq \ldots \leq \lambda^{n} d\left(x_{1}, x_{0}\right) \quad \forall n \geq 1 .
$$

Thus, for $m>n$,

$$
\begin{align*}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m-1}\right)+d\left(x_{m-1}, x_{m-2}\right)+\ldots+d\left(x_{n+1}, x_{n}\right) \\
& \leq\left(\lambda^{m-1}+\lambda^{m-2}+\ldots+\lambda^{n}\right) d\left(x_{1}, x_{0}\right) \tag{2.1}\\
& =\frac{\lambda^{n}\left(1-\lambda^{m-n}\right)}{1-\lambda} d\left(x_{1}, x_{0}\right) \leq C \lambda^{n} d\left(x_{1}, x_{0}\right),
\end{align*}
$$

where $C=1 /(1-\lambda)$.
This implies that the sequence $\left\{x_{i}\right\}_{i=1,2, \ldots}$ is a Cauchy sequence. By completeness of X, it converges, say to an element \bar{x} of X. But, since T is continuous,

$$
T(\bar{x})=T\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} T\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=\bar{x},
$$

so, $T(\bar{x})=\bar{x}$. This proves the existence.
(Convergence rates) Since (2.1) holds for any $m \geq n$, let $m \rightarrow \infty$ we get

$$
d\left(\bar{x}, x_{n}\right) \leq C \lambda^{n} d\left(x_{1}, \bar{x}\right) .
$$

The fact $\lambda \in(0,1)$ gives that the convergence is exponential.

So in a dynamical system (X, T), if X is a complete metric space and T is contracting map, then there is a unique fixed point \bar{x}, that is, $T(\bar{x})=\bar{x}$. For any other point $x \in X$, we have that

$$
\lim _{n \rightarrow \infty} T^{n} x=\bar{x}
$$

exponentially fast.
The preceding theorem gives a useful sufficient condition for the existence of fixed points in a wide variety of situations. It is frequently useful to know when such fixed points depend continuously on parameters. This leads us to the next result.

Definition 2.2. Let Λ be a topological space (e.g. a metric space), and let X be a complete metric space. A map T from Λ into the space of maps $\mathcal{M}(X, X)$ is called a continuous family of self-maps of X if the map $\widehat{T}(\lambda, x)=T(\lambda)(x)$ is continuous as a map from the product space $\Lambda \times X$ to X.

The map T is called a uniform family of contractions on X if it is a continuous family of self-maps of X and there is a constant $0<\alpha<1$ such that

$$
d(\widehat{T}(\lambda, x), \widehat{T}(\lambda, y)) \leq \alpha d(x, y)
$$

for all $x, y \in X, \lambda \in \Lambda$.
Thus, the continuous family is a uniform family of contractions if and only if all the maps in the family have the same upper bound $\alpha<1$ for their Lipschitz constants.

Given the family \widehat{T} as above, we define the map $T_{\lambda}: X \rightarrow X$ by

$$
T_{\lambda}(x)=T(\lambda)(x)=\widehat{T}(\lambda, x)
$$

Theorem 2.3. If $T: \Lambda \rightarrow \mathcal{M}(X, X)$ is a uniform family of contractions on X, then each map T_{λ} has a unique fixed point x_{λ} which depends continuously on λ. That is, the map $\lambda \rightarrow \bar{x}_{\lambda}$ is a continuous map from Λ into X.

Proof. Let $g(\lambda)$ be the fixed point of the map T_{λ} which exists since the map T_{λ} is a contraction.

For $\lambda_{1}, \lambda_{2} \in \Lambda$, we have

$$
\begin{aligned}
d\left(g\left(\lambda_{1}\right), g\left(\lambda_{2}\right)\right) & =d\left(T_{\lambda_{1}} g\left(\lambda_{1}\right), T_{\lambda_{2}} g\left(\lambda_{2}\right)\right) \\
& \leq d\left(T_{\lambda_{1}} g\left(\lambda_{1}\right), T_{\lambda_{1}} g\left(\lambda_{2}\right)\right)+d\left(T_{\lambda_{1}} g\left(\lambda_{2}\right), T_{\lambda_{2}} g\left(\lambda_{2}\right)\right) \\
& \leq \alpha d\left(g\left(\lambda_{1}\right), g\left(\lambda_{2}\right)\right)+d\left(T_{\lambda_{1}} g\left(\lambda_{2}\right), T_{\lambda_{2}} g\left(\lambda_{2}\right)\right) .
\end{aligned}
$$

This implies that

$$
d\left(g\left(\lambda_{1}\right), g\left(\lambda_{2}\right)\right) \leq(1-\alpha)^{-1} d\left(T_{\lambda_{1}} g\left(\lambda_{2}\right), T_{\lambda_{2}} g\left(\lambda_{2}\right)\right)
$$

Since the map $\lambda \rightarrow T_{\lambda} g\left(\lambda_{2}\right)$ is continuous for fixed λ_{2}, we see that $\lambda \rightarrow g(\lambda)$ is continuous.

Recall that a normed linear (vector) space is an ordered pair $(X,\|\cdot\|)$ where X is a vector space and $\|\cdot\|: X \rightarrow \mathbb{R}$ is a real-valued function on X such that
(i) $\|x\| \geq 0 \forall x$ and $\|x\|=0$ iff $x=0$ for $x \in X$;
(ii) $\|\alpha x\|=\|\alpha\|\|x\|$ for $\alpha \in \mathbb{R}, x \in X$;
(iii) $\|x+y\| \leq\|x\|+\|y\| \forall x, y \in X$.

A normed linear space $(X,\|\cdot\|)$ is called a Banach space if it is a complete metric space with respect to the metric $d(x, y)=\|x-y\|$ induced by the norm.

Let X be a metric space and Y be a Banach space. For a bounded function g from X to Y, the sup norm, or C^{0} norm, of g is given by

$$
\|g\|=\|g\|_{0}=\sup _{x \in X}\|g(x)\| .
$$

Let X and and Y be Banach spaces. For a linear map, or a linear operator, f from X to Y, the norm of f is given by

$$
\|f\|=\sup _{|x| \leq 1}\|f(x)\|
$$

It is known that $f: X \rightarrow Y$ is bounded if $\|f\|<\infty$.
Let M be a manifold, and $f: M \rightarrow M$ be differential. Then for any $x \in M$, the differential $D f_{x}$ is a linear map from $T_{x} M$ to $T_{f(x)} M$. The C^{1} norm of f is given by

$$
\|f\|_{1}=\sup _{x \in M}\left\|D f_{x}\right\| .
$$

However, if M is a normed space, the C^{1} norm of f is also given by

$$
\|f\|_{1}=\sup \left\{\|f\|,\left\|D f_{x}\right\|: x \in M\right\}
$$

Example 2.4. Let $X=\mathbb{R}^{n}$, and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map with $\|A\|<1$. Then the dynamical system $\left(\mathbb{R}^{n}, A\right)$ is contracting with a unique fixed point 0 .

Furthere, let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an map with $\|g\|_{0},\|g\|_{1}<\infty$. Then for $f_{\epsilon}(x)=A x+\epsilon g(x)$, there exists $\epsilon_{0}>0$ such that for any $\epsilon \in\left[0, \epsilon_{0}\right]$, the system $\left(\mathbb{R}^{n}, f_{\epsilon}\right)$ is contracting with a unique fixed point p_{ϵ} close to 0 by the above theorem.

Lemma 2.5. Let f be a continuously differentiable map on $X=\mathbb{R}^{n}$ such that $\left\|D f_{x}\right\| \leq r<1$ for all $x \in X$. Then for any $x, y \in X$, $|f(x)-f(y)| \leq r|x-y|$.

Proof. Let $u(t)=t x+(1-t) y$. Then $f(u(0))=x$ and $f(u(1))=y$. Also,

$$
\frac{d}{d t} f(u(t))=\frac{\partial f}{\partial u} \frac{d u}{d t}=D f_{u}(x-y)
$$

By the Fundamental Theorem of Calculus, we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\int_{0}^{1} \frac{d}{d t} f(u(t)) d t\right|=\left|\int_{0}^{1} D f_{u} d t(x-y)\right| \\
& \leq\left|\int_{0}^{1} D f_{u} d t\right||x-y| \leq r|x-y|
\end{aligned}
$$

Lemma 2.6. Let f be a continuously differentiable map on $X=\mathbb{R}^{n}$ with a fixed point \bar{x} such that all eigenvalues of $D f_{\bar{x}}$ have absolute value less than 1. Then there is a closed neighborhood U of \bar{x} such that $f(U) \subset U$ and f is a contraction on U with respect to an adapted norm.

Proof. It can be proved that the assumption on the eigenvalues implies that one can choose a norm that we denote by $\|\cdot\|^{\prime}$ for which $\|D f\|^{\prime}<1$. Hence by continuity a small closed "ball" around \bar{x} with respect to the norm $\|\cdot\|^{\prime}$ can be chosen as the set U. (This ball is in fact an ellipsoid in \mathbb{R}^{n}.)

Example 2.7. Let $X=\mathbb{C}$, and let $f(z)=z^{2}$ for $z \in \mathbb{C}$. Since $f^{\prime}(z)=$ $2 z$, for any $r<1$, f is a contraction on $B(r):=\{z \in \mathbb{Z}:|z| \leq r\}$.

For any analytic function $g: \mathbb{C} \rightarrow C C$, there existsxists $\epsilon_{0}>0$ such that for any $\epsilon \in\left[0, \epsilon_{0}\right], f(z)=f_{\epsilon}(z)=z^{2}+\epsilon g(z)$ is contracting on $B(r)$.
Example 2.8 (The Newton Method). Consider a function f on the real line and suppose that we have a reasonable guess x_{0} for a root. Unless the graph intersects the x-axis at x_{0}, i.e., $f\left(x_{0}\right)=0$, we need to improve our guess. To that end we take the tangent line and see at which point x_{1} it intersects the x-axis by setting $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-\right.$ $\left.x_{0}\right)=0$. Thus the improved guess is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

It is clear that \bar{x} is a root of the equation if and only if it is a fixed point of the map $F(x):=x-\left(f(x) / f^{\prime}(x)\right)$.

A fixed point \bar{x} of a differentiable map F is said to be superattracting if $F^{\prime}(\bar{x})=0$.

Proposition 2.9. If $\left|f^{\prime}(x)\right|>\delta$ and $\left|f^{\prime \prime}(x)\right|<M$ on a neighborhood of the root x^{*}, then \bar{x} is a superattracting fixed point of $F(x)$.

Proof. This is because $F^{\prime}(x)=f(x) f^{\prime \prime}(x) /\left(f^{\prime}(x)\right)^{2}$ and $f(\bar{x})=0$.
Denote $\epsilon_{n}=\left|x_{n}-\bar{x}\right|$. If x_{n} is sufficient close to \bar{x}, then it can be proved that

$$
\epsilon_{n+1} \leq M \epsilon_{n}^{2}, \quad \text { where } M=\sup _{x \in I}\left|\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right|
$$

and I is a small interval containing $\left(\bar{x}-\epsilon_{n}, \bar{x}+\epsilon_{n}\right)$.

Other Fixed Point Theorems.

Theorem 2.10 (Brouwer Fixed Point Theorem). Every continuous map T of the closed unit ball in \mathbb{R}^{n} to itself has a fixed point.

For $n=1$, the result can be obtained from the intermediate velue theorem.

Theorem 2.11. Every continuous map T of a the compact interval I to itself has a fixed point.

Proof. Suppose $I=[a, b]$, where $-\infty<a<b<\infty$. Since $f(I) \subset I$, we have $f(a)-a \geq 0$ and $f(b)-b \leq 0$. Then we use the intermediate velue theorem for f-id.

Theorem 2.12 (Schauder Fixed Point Theorem). Every continuous self-map of a compact convex subset of a Banach space has a fixed point.

