2. CONTRACTING MAPS AND FIXED POINT THEOREMS

Let X be a metric space and let T': X — X be a mapping. Recall
that a fixed point p of T" is a point p € X such that T'(p) = p.

A self-map T of a metric space X is called a contraction (or contrac-
tion map or mapping) if there is a constant 0 < A < 1 such that

d(Tx, Ty) < Ad(z,y)
for all x,y € X. Thus, T : X — X is a contraction if and only it is
Lipschitz with Lipschitz constant less than 1.

Theorem 2.1 (Contraction Mapping Theorem). Suppose X is a com-
plete metric space and T : X — X 1is a contraction map. Then T has
a unique fixed point T in X.

Moreover, if x is any point in F, then the sequence of iterates x, T'x,
T?x, ... converges to T exponentially fast.

Proof. (Uniqueness) If 0 < A\ < 1 is the contraction constant for 7" and
Tx=uxz,Ty =y, then

d(z,y) = d(Tz,Ty) < Ad(z,y)
which implies that d(z,y) = 0. This in turn implies that z = y.

(Existence) Take any z € X and let 7y = z, x; = T'z for i > 0.
Then,

A(Tps1,Tn) < AT, Tpoq) < o0 < Ad(x1,29) Vno > 1.
Thus, for m > n,
(X, Tn) <d(Tpy Tim—1) + A(T_1, Tm—2) + ... + d(Tpy1, Tn)
SATE N2 4 A d (2, 7o)
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:?d(m, xg) < CN'd(x1, 0),

(2.1)

where C'=1/(1 — A).

This implies that the sequence {z;},—1 2. is a Cauchy sequence. By
completeness of X, it converges, say to an element T of X. But, since
T is continuous,

T(z)=T(l = lim T = 1li =1
@) =T(Eg7n) = B Ton) = By nia =7,
so, T'(z) = z. This proves the existence.

(Convergence rates) Since (2.1) holds for any m > n, let m — oo we
get

d(z,x,) < CXN'd(zy,T).
The fact A € (0,1) gives that the convergence is exponential. U
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So in a dynamical system (X,T), if X is a complete metric space
and T is contracting map, then there is a unique fixed point z, that is,
T(z) = z. For any other point x € X, we have that

lim Tz ==
n—oo
exponentially fast.

The preceding theorem gives a useful sufficient condition for the ex-
istence of fixed points in a wide variety of situations. It is frequently
useful to know when such fixed points depend continuously on param-
eters. This leads us to the next result.

Definition 2.2. Let A be a topological space (e.g. a metric space), and
let X be a complete metric space. A map T from A into the space of
maps M(X, X) is called a continuous family of self-maps of X if the

map f()\, x) =T(N)(x) is continuous as a map from the product space
Ax X to X.

The map T s called a uniform family of contractions on X if it is a
continuous family of self-maps of X and there is a constant 0 < o < 1
such that

AT\ ), T(\y) < ad(x,y)
forall z,y € X, A € A.

Thus, the continuous family is a uniform family of contractions if and
only if all the maps in the family have the same upper bound o < 1
for their Lipschitz constants.

Given the family T as above, we define the map 7} : X — X by

Ta(z) = T(\)(@) = T(\,x)

Theorem 2.3. If T : A - M(X, X) is a uniform family of contrac-
tions on X, then each map Ty has a unique fixed point x, which depends
continuously on A. That is, the map X\ — T is a continuous map from
A into X.

Proof. Let g(\) be the fixed point of the map T which exists since the
map T} is a contraction.
For A, Ay € A, we have

d(g(A1), 9(A2)) =d(T3,9(M), Tho9(A2))
<d(Ty,9(M), To,9(X2)) + d(Th,9(A2), T, 9(A2))
<ad(g(A1), 9(A2)) + d(Th, 9(A2), Tr,9(A2)).-
This implies that

d(g(M),9(A2)) < (1 — ) 'd(Th,g(X2), Tryg(X2)).
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Since the map A — Thg(\2) is continuous for fixed Ay, we see that

A — g(A) is continuous. O
Recall that a normed linear (vector) space is an ordered pair (X, || - ||)
where X is a vector space and || - || : X — R is a real-valued function

on X such that
(i) [[z]|>0Vzand ||z ||=0iff z =0 for z € X;

(i) [[az || =l e[| for « € R,z € X;
(i) [z +y [ <[z +]ylVzyecX
A normed linear space (X, || -||) is called a Banach space if it is a
complete metric space with respect to the metric d(z,y) = ||z —y ||

induced by the norm.
Let X be a metric space and Y be a Banach space. For a bounded
function g from X to Y, the sup norm, or C° norm, of ¢ is given by

lgll = llgllo = sup | g(z) |-
zeX

Let X and and Y be Banach spaces. For a linear map, or a linear
operator, f from X to Y, the norm of f is given by

/1l = sup [| f(z) |-
lz[<1
It is known that f: X — Y is bounded if || f|| < oc.
Let M be a manifold, and f : M — M be differential. Then for any

x € M, the differential Df, is a linear map from T, M to T,y M. The
C! norm of f is given by

1fllx = sup [|D fal].
zeM

However, if M is a normed space, the C' norm of f is also given by

[/l = sup{ AN (1D el - 2 € M}

Example 2.4. Let X = R", and A : R" — R" be a linear map with
|A|| < 1. Then the dynamical system (R"™, A) is contracting with a
unique fized point 0.

Furthere, let g : R™ — R™ be an map with ||g|o, ||g]1 < co. Then for
fe(x) = Az +eg(x), there exists eg > 0 such that for any € € [0, €], the
system (R™, f.) is contracting with a unique fized point p. close to 0 by
the above theorem.

Lemma 2.5. Let f be a continuously differentiable map on X = R"
such that ||[Dfy|| < r < 1 for all z € X. Then for any z,y € X,

[f(x) = F(y)l < rle —yl.
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Proof. Let u(t) = tx + (1 — t)y. Then f(u(0)) = x and f(u(l)) = v.
Also,

d af du
%f(u(t)) = Sudl Dfu(x —y).

By the Fundamental Theorem of Calculus, we have
1 d 1
1)~ ) =] [ Greyd] = | [ Drdtia-y)
0 0

1
g’/ Dfudt’]x—ylgr\x—y\ O
0

Lemma 2.6. Let f be a continuously differentiable map on X = R"
with a fized point T such that all eigenvalues of D fz have absolute
value less than 1. Then there is a closed neighborhood U of T such
that f(U) C U and f is a contraction on U with respect to an adapted
norm.

Proof. Tt can be proved that the assumption on the eigenvalues implies
that one can choose a norm that we denote by ||-||" for which || D f||" < 1.
Hence by continuity a small closed “ball” around x with respect to the
norm || - || can be chosen as the set U. (This ball is in fact an ellipsoid
in R™.) O

Example 2.7. Let X = C, and let f(z) = 2* for z € C. Since f'(z) =
2z, for any r < 1, f is a contraction on B(r) :={z € Z: |z| <r}.

For any analytic function g : C — CC, there existszists ¢g > 0 such
that for any € € [0,6], f(2) = f(2) = 2% + €g(2) is contracting on
B(r).

Example 2.8 (The Newton Method). Consider a function f on the
real line and suppose that we have a reasonable gquess xo for a root.
Unless the graph intersects the x-azis at xo, i.e., f(xg) = 0, we need
to improve our guess. To that end we take the tangent line and see at
which point xy it intersects the x-axis by setting f(xo) + f'(xo)(x1 —
xo) = 0. Thus the improved guess is

It is clear that Z is a root of the equation if and only if it is a fixed
point of the map F(x) =z — (f(x)/f'(x)).

A fixed point Z of a differentiable map F is said to be superattracting
if F'(z)=0.
Proposition 2.9. If |f'(x)] > 6 and |f"(z)| < M on a neighborhood
of the root x*, then T is a superattracting fixved point of F(x).
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Proof. This is because F'(z) = f(z)f"(z)/(f(x))* and f(z) =0. O

Denote €, = |z, — z|. If z, is sufficient close to Z, then it can be
proved that

f"(x)
f'(x)
and [ is a small interval containing (T — €,,7 + €,).

Other Fixed Point Theorems.

€ni1 < M ei, where M = suII)
xTEe

Y

Theorem 2.10 (Brouwer Fixed Point Theorem). Every continuous
map T of the closed unit ball in R™ to itself has a fized point.

For n = 1, the result can be obtained from the intermediate velue
theorem.

Theorem 2.11. Every continuous map T of a the compact interval 1
to itself has a fixed point.

Proof. Suppose I = [a,b], where —0o < a < b < oo. Since f(I) C I,
we have f(a) —a >0 and f(b) —b < 0. Then we use the intermediate
velue theorem for f —id. O

Theorem 2.12 (Schauder Fixed Point Theorem). Every continuous
self-map of a compact convex subset of a Banach space has a fixed
point.



